These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34490985)

  • 41. Time-Lapse Förster Resonance Energy Transfer Imaging by Confocal Laser Scanning Microscopy for Analyzing Dynamic Molecular Interactions in the Plasma Membrane of B Cells.
    Sohn HW; Brzostowski J
    Methods Mol Biol; 2018; 1707():207-224. PubMed ID: 29388110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera.
    Biskup C; Zimmer T; Benndorf K
    Nat Biotechnol; 2004 Feb; 22(2):220-4. PubMed ID: 14730318
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Answering some questions about structured illumination microscopy.
    Manton JD
    Philos Trans A Math Phys Eng Sci; 2022 Apr; 380(2220):20210109. PubMed ID: 35152757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Förster resonance energy transfer photoacoustic microscopy.
    Wang Y; Wang LV
    J Biomed Opt; 2012 Aug; 17(8):086007. PubMed ID: 23224194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy.
    Schaufele F
    Methods; 2014 Mar; 66(2):188-99. PubMed ID: 23927839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A quantitative protocol for intensity-based live cell FRET imaging.
    Kaminski CF; Rees EJ; Schierle GS
    Methods Mol Biol; 2014; 1076():445-54. PubMed ID: 24108638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep-tissue photoacoustic tomography of Förster resonance energy transfer.
    Wang Y; Xia J; Wang LV
    J Biomed Opt; 2013 Oct; 18(10):101316. PubMed ID: 23884608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Förster Resonance Energy Transfer to Study TCR-pMHC Interactions in the Immunological Synapse.
    Schütz GJ; Huppa JB
    Methods Mol Biol; 2017; 1584():207-229. PubMed ID: 28255705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical methods in the study of protein-protein interactions.
    Masi A; Cicchi R; Carloni A; Pavone FS; Arcangeli A
    Adv Exp Med Biol; 2010; 674():33-42. PubMed ID: 20549938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOκ fluorescent protein pairs.
    Su T; Pan S; Luo Q; Zhang Z
    Biosens Bioelectron; 2013 Aug; 46():97-101. PubMed ID: 23517824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants.
    Banerjee S; Garcia LR; Versaw WK
    Microsc Microanal; 2016 Apr; 22(2):300-10. PubMed ID: 26879593
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simplified Instrument Calibration for Wide-Field Fluorescence Resonance Energy Transfer (FRET) Measured by the Sensitized Emission Method.
    Menaesse A; Sumetsky D; Emanuely N; Stein JL; Gates EM; Hoffman BD; Boustany NN
    Cytometry A; 2021 Apr; 99(4):407-416. PubMed ID: 32700451
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins.
    Rizzo MA; Springer G; Segawa K; Zipfel WR; Piston DW
    Microsc Microanal; 2006 Jun; 12(3):238-54. PubMed ID: 17481360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence resonance energy transfer detected by scanning near-field optical microscopy.
    Kirsch AK; Subramaniam V; Jenei A; Jovin TM
    J Microsc; 1999; 194(Pt 2-3):448-54. PubMed ID: 10999315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement.
    Wang S; Li KJ; Lin XW; Jiang CZ; Chen DH; Wu Q; Hua ZC
    J Microsc; 2012 Oct; 248(1):58-65. PubMed ID: 22971218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photobleaching-corrected FRET efficiency imaging of live cells.
    Zal T; Gascoigne NR
    Biophys J; 2004 Jun; 86(6):3923-39. PubMed ID: 15189889
    [TBL] [Abstract][Full Text] [Related]  

  • 60. N-way FRET microscopy of multiple protein-protein interactions in live cells.
    Hoppe AD; Scott BL; Welliver TP; Straight SW; Swanson JA
    PLoS One; 2013; 8(6):e64760. PubMed ID: 23762252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.