These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34491061)

  • 1. Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals.
    Qin Z; Zhang C; Chen L; Yu T; Wang X; Xiao M
    Nano Lett; 2021 Sep; 21(18):7831-7838. PubMed ID: 34491061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Gain from Biexcitons in CsPbBr
    Zhao W; Qin Z; Zhang C; Wang G; Huang X; Li B; Dai X; Xiao M
    J Phys Chem Lett; 2019 Mar; 10(6):1251-1258. PubMed ID: 30811208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.
    Xu Y; Chen Q; Zhang C; Wang R; Wu H; Zhang X; Xing G; Yu WW; Wang X; Zhang Y; Xiao M
    J Am Chem Soc; 2016 Mar; 138(11):3761-8. PubMed ID: 26938656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Bulk-like Nanocrystals To Probe Intrinsic Optical Gain Characteristics of Inorganic Lead Halide Perovskites.
    Geiregat P; Maes J; Chen K; Drijvers E; De Roo J; Hodgkiss JM; Hens Z
    ACS Nano; 2018 Oct; 12(10):10178-10188. PubMed ID: 30235413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Optical Gain Threshold in CsPbI
    Kobiyama E; Tahara H; Sato R; Saruyama M; Teranishi T; Kanemitsu Y
    Nano Lett; 2020 May; 20(5):3905-3910. PubMed ID: 32343589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Passivation for Promotes Bi-Excitonic Amplified Spontaneous Emission in CsPb(Br/Cl)
    Qaid SMH; Ghaithan HM; Bawazir HS; Aldwayyan AS
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling.
    Taghipour N; Delikanli S; Shendre S; Sak M; Li M; Isik F; Tanriover I; Guzelturk B; Sum TC; Demir HV
    Nat Commun; 2020 Jul; 11(1):3305. PubMed ID: 32620749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot Biexciton Effect on Optical Gain in CsPbI
    Yumoto G; Tahara H; Kawawaki T; Saruyama M; Sato R; Teranishi T; Kanemitsu Y
    J Phys Chem Lett; 2018 May; 9(9):2222-2228. PubMed ID: 29644864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent Charging of CsPbBr
    Wang G; Yang B; Mei S; Wang B; Zhang Z; Mao Y; Guo J; Ma G; Guo R; Xing G
    Small; 2024 May; 20(18):e2307785. PubMed ID: 38054790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy.
    Fu M; Tamarat P; Huang H; Even J; Rogach AL; Lounis B
    Nano Lett; 2017 May; 17(5):2895-2901. PubMed ID: 28240910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Threshold Multiexciton Optical Gain in Colloidal CdSe/CdTe Core/Crown Type-II Nanoplatelet Heterostructures.
    Li Q; Xu Z; McBride JR; Lian T
    ACS Nano; 2017 Mar; 11(3):2545-2553. PubMed ID: 28157330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Surface Chemistry and Structure of Colloidal Lead Halide Perovskite Nanocrystals.
    Smock SR; Chen Y; Rossini AJ; Brutchey RL
    Acc Chem Res; 2021 Feb; 54(3):707-718. PubMed ID: 33449626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX
    Navarro-Arenas J; Suárez I; Chirvony VS; Gualdrón-Reyes AF; Mora-Seró I; Martínez-Pastor J
    J Phys Chem Lett; 2019 Oct; 10(20):6389-6398. PubMed ID: 31545904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negatively Charged and Dark Excitons in CsPbBr
    Canneson D; Shornikova EV; Yakovlev DR; Rogge T; Mitioglu AA; Ballottin MV; Christianen PCM; Lhuillier E; Bayer M; Biadala L
    Nano Lett; 2017 Oct; 17(10):6177-6183. PubMed ID: 28820601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating Lead Halide Perovskite Nanocrystals as a Spin Laser Gain Medium.
    Tang B; Li G; Ru X; Gao Y; Li Z; Shen H; Yao HB; Fan F; Du J
    Nano Lett; 2022 Jan; 22(2):658-664. PubMed ID: 34994571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals.
    Marceddu M; Saba M; Quochi F; Lai A; Huang J; Talapin DV; Mura A; Bongiovanni G
    Nanotechnology; 2012 Jan; 23(1):015201. PubMed ID: 22156236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically control amplified spontaneous emission in colloidal quantum dots.
    Yu J; Shendre S; Koh WK; Liu B; Li M; Hou S; Hettiarachchi C; Delikanli S; Hernández-Martínez P; Birowosuto MD; Wang H; Sum T; Demir HV; Dang C
    Sci Adv; 2019 Oct; 5(10):eaav3140. PubMed ID: 31692653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Partial Carrier Confinement on Stimulated Emission in Strongly Confined Perovskite Nanocrystals.
    Geiregat P; Erdem O; Samoli M; Chen K; Hodgkiss JM; Hens Z
    ACS Nano; 2024 Jul; 18(27):17794-17805. PubMed ID: 38913946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.
    Chen L; Li B; Zhang C; Huang X; Wang X; Xiao M
    Nano Lett; 2018 Mar; 18(3):2074-2080. PubMed ID: 29464960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.