BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34491088)

  • 1. Integrative Metabolomic and Transcriptomic Analyses Uncover Metabolic Alterations and Pigment Diversity in
    Huang D; Wang Y; Zhang J; Xu H; Bai J; Zhang H; Jiang X; Yuan J; Lu G; Jiang L; Liao X; Liu B; Liu H
    mSystems; 2021 Oct; 6(5):e0080721. PubMed ID: 34491088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source.
    Liu H; Zhang J; Lu G; Wang F; Shu L; Xu H; Li Z; Wang Y; Guo Q; Wu S; Jiang L; Wang C; Huang D; Liu B
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6369-6379. PubMed ID: 34402939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monascus yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet.
    Zhou W; Guo R; Guo W; Hong J; Li L; Ni L; Sun J; Liu B; Rao P; Lv X
    Food Funct; 2019 Feb; 10(2):1073-1084. PubMed ID: 30720827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of
    Hong JL; Wu L; Lu JQ; Zhou WB; Cao YJ; Lv WL; Liu B; Rao PF; Ni L; Lv XC
    RSC Adv; 2020 Jan; 10(9):5268-5282. PubMed ID: 35498272
    [No Abstract]   [Full Text] [Related]  

  • 5. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7.
    Liu Q; Xie N; He Y; Wang L; Shao Y; Zhao H; Chen F
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):285-96. PubMed ID: 24162083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in Monascus pigment characteristics and biosynthetic gene expression using resting cell culture systems combined with extractive fermentation.
    Chen G; Bei Q; Huang T; Wu Z
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):117-126. PubMed ID: 29098409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation.
    Chen G; Yang S; Wang C; Shi K; Zhao X; Wu Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2469-2479. PubMed ID: 31993704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving mycelial morphology and adherent growth as well as metabolism of Monascus yellow pigments using nitrate resources.
    Yang SZ; Huang ZF; Liu HQ; Hu X; Wu ZQ
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9607-9617. PubMed ID: 33044600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation contributes more to Monascus pigments diversity in different strains than to DNA sequence variation.
    Guo X; Li Y; Zhang R; Yu J; Ma X; Chen M; Wang Y
    World J Microbiol Biotechnol; 2019 Aug; 35(9):138. PubMed ID: 31451937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation.
    Shi K; Song D; Chen G; Pistolozzi M; Wu Z; Quan L
    J Biosci Bioeng; 2015 Aug; 120(2):145-54. PubMed ID: 25648278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber.
    Huang T; Wang M; Shi K; Chen G; Tian X; Wu Z
    AMB Express; 2017 Dec; 7(1):79. PubMed ID: 28401504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Zn(II)(2)Cys(6) transcription factor MPsGeI suppresses pigment biosynthesis in Monascus.
    Guo X; Atehli D; Chen M; Chen D; Wang Y
    Int J Biol Macromol; 2023 Apr; 233():123504. PubMed ID: 36736523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic of orange pigment production from Monascus ruber on submerged fermentation.
    Vendruscolo F; Schmidell W; de Oliveira D; Ninow JL
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):115-121. PubMed ID: 27687221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the pigment production by changing Cell morphology and gene expression of Monascus ruber in high-sugar synergistic high-salt stress fermentation.
    Chen G; Zhao W; Zhao L; Song D; Chen B; Zhao X; Hu T
    J Appl Microbiol; 2023 Oct; 134(10):. PubMed ID: 37858303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannitol improves
    Chen D; Li H
    Front Microbiol; 2023; 14():1300461. PubMed ID: 38156009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange
    Patrovsky M; Sinovska K; Branska B; Patakova P
    Food Sci Nutr; 2019 Nov; 7(11):3494-3500. PubMed ID: 31763000
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolomics Analysis Coupled with Weighted Gene Co-Expression Network Analysis Unravels the Associations of Tricarboxylic Acid Cycle-Intermediates with Edible Pigments Produced by
    Zhang H; Liu H; Shu L; Xu H; Cheng Y; Mao Z; Liu B; Liao X; Huang D
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885410
    [No Abstract]   [Full Text] [Related]  

  • 18. Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910.
    Huang T; Tan H; Lu F; Chen G; Wu Z
    Microb Cell Fact; 2017 Nov; 16(1):208. PubMed ID: 29162105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of yellow pigments production via high CaCl2 stress fermentation of Monascus purpureus.
    Bai Y; Zhang W; Guo R; Yu J; Wang Y
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 38378945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic responses to adding nitrates to improve hydrophilic yellow pigment in Monascus fermentation.
    Huang Z; Hu T; Yang S; Tian X; Wu Z
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1341-1359. PubMed ID: 36705673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.