BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34491202)

  • 1. Activity-dependent regulation of mitochondrial motility in developing cortical dendrites.
    Silva CA; Yalnizyan-Carson A; Fernández Busch MV; van Zwieten M; Verhage M; Lohmann C
    Elife; 2021 Sep; 10():. PubMed ID: 34491202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held.
    Lujan BJ; Singh M; Singh A; Renden RB
    J Neurophysiol; 2021 Oct; 126(4):976-996. PubMed ID: 34432991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial trafficking to synapses in cultured primary cortical neurons.
    Chang DT; Honick AS; Reynolds IJ
    J Neurosci; 2006 Jun; 26(26):7035-45. PubMed ID: 16807333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo mitochondrial inhibition alters corticostriatal synaptic function and the modulatory effects of neurotrophins.
    Mendoza E; Miranda-Barrientos JA; Vázquez-Roque RA; Morales-Herrera E; Ruelas A; De la Rosa G; Flores G; Hernández-Echeagaray E
    Neuroscience; 2014 Nov; 280():156-70. PubMed ID: 25241069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held.
    Singh M; Denny H; Smith C; Granados J; Renden R
    J Physiol; 2018 Dec; 596(24):6263-6287. PubMed ID: 30285293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of quantal synaptic transmission by dendritic calcium imaging.
    Murphy TH; Baraban JM; Wier WG; Blatter LA
    Science; 1994 Jan; 263(5146):529-32. PubMed ID: 7904774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release.
    Wang LY; Neher E; Taschenberger H
    J Neurosci; 2008 Dec; 28(53):14450-8. PubMed ID: 19118179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture.
    Chang DTW; Reynolds IJ
    Neuroscience; 2006 Aug; 141(2):727-736. PubMed ID: 16797853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional modulation of glutamatergic synaptic transmission by metabotropic glutamate type 7 receptors at Schaffer collateral-CA1 hippocampal synapses.
    Martín R; Ferrero JJ; Collado-Alsina A; Aguado C; Luján R; Torres M; Sánchez-Prieto J
    J Physiol; 2018 Mar; 596(5):921-940. PubMed ID: 29280494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation.
    Pivovarova NB; Pozzo-Miller LD; Hongpaisan J; Andrews SB
    J Neurosci; 2002 Dec; 22(24):10653-61. PubMed ID: 12486158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic Energy Depletion due to Iron Deficiency Impairs Dendritic Mitochondrial Motility during Hippocampal Neuron Development.
    Bastian TW; von Hohenberg WC; Georgieff MK; Lanier LM
    J Neurosci; 2019 Jan; 39(5):802-813. PubMed ID: 30523068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria at the synapse.
    Ly CV; Verstreken P
    Neuroscientist; 2006 Aug; 12(4):291-9. PubMed ID: 16840705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release Mode Dynamically Regulates the RRP Refilling Mechanism at Individual Hippocampal Synapses.
    Kim Y; Lee U; Choi C; Chang S
    J Neurosci; 2020 Oct; 40(44):8426-8437. PubMed ID: 32989096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mossy fibre contact triggers the targeting of Kv4.2 potassium channels to dendrites and synapses in developing cerebellar granule neurons.
    Shibasaki K; Nakahira K; Trimmer JS; Shibata R; Akita M; Watanabe S; Ikenaka K
    J Neurochem; 2004 May; 89(4):897-907. PubMed ID: 15140189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.
    Su B; Ji YS; Sun XL; Liu XH; Chen ZY
    J Biol Chem; 2014 Jan; 289(3):1213-26. PubMed ID: 24302729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike Activity Regulates Vesicle Filling at a Glutamatergic Synapse.
    Li D; Zhu Y; Huang H
    J Neurosci; 2020 Jun; 40(26):4972-4980. PubMed ID: 32430294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of postsynaptic glutamate receptor targeting.
    Chen L; Tracy T; Nam CI
    Curr Opin Neurobiol; 2007 Feb; 17(1):53-8. PubMed ID: 17161597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated.
    Mainen ZF; Malinow R; Svoboda K
    Nature; 1999 May; 399(6732):151-5. PubMed ID: 10335844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BCL-xL regulates synaptic plasticity.
    Jonas E
    Mol Interv; 2006 Aug; 6(4):208-22. PubMed ID: 16960143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial trafficking and anchoring in neurons: New insight and implications.
    Sheng ZH
    J Cell Biol; 2014 Mar; 204(7):1087-98. PubMed ID: 24687278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.