These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34491735)

  • 21. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers.
    Kargar F; Barani Z; Salgado R; Debnath B; Lewis JS; Aytan E; Lake RK; Balandin AA
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37555-37565. PubMed ID: 30299919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxide-Mediated Formation of Chemically Stable Tungsten-Liquid Metal Mixtures for Enhanced Thermal Interfaces.
    Kong W; Wang Z; Wang M; Manning KC; Uppal A; Green MD; Wang RY; Rykaczewski K
    Adv Mater; 2019 Nov; 31(44):e1904309. PubMed ID: 31523854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials.
    Lee Y; Akyildiz K; Kang C; So JH; Koo HJ
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breaking through the Solid/Liquid Processability Barrier: Thermal Conductivity and Rheology in Hybrid Graphene-Graphite Polymer Composites.
    Varenik M; Nadiv R; Levy I; Vasilyev G; Regev O
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7556-7564. PubMed ID: 28145122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance.
    Dou Z; Zhang B; Xu P; Fu Q; Wu K
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38019643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling of Effective Thermal Conductivity of Composites Filled with Core-Shell Fillers.
    Czyzewski J; Rybak A; Gaska K; Sekula R; Kapusta C
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-graphite hybrid epoxy composites with controllable workability for thermal management.
    Levy I; Wormser EM; Varenik M; Buzaglo M; Nadiv R; Regev O
    Beilstein J Nanotechnol; 2019; 10():95-104. PubMed ID: 30680282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of polyimide-modified aluminum nitride fillers in AlN@PI/epoxy composites with enhanced thermal conductivity for electronic encapsulation.
    Zhou Y; Yao Y; Chen CY; Moon K; Wang H; Wong CP
    Sci Rep; 2014 Apr; 4():4779. PubMed ID: 24759082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Thermal Conductivity of Epoxy Composites by Introducing 1D AlN Whiskers and Constructing Directionally Aligned 3D AlN Filler Skeletons.
    Hao X; Wan S; Zhao Z; Zhu L; Peng D; Yue M; Kuang J; Cao W; Liu G; Wang Q
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2124-2133. PubMed ID: 36576869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
    Bartlett MD; Kazem N; Powell-Palm MJ; Huang X; Sun W; Malen JA; Majidi C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2143-2148. PubMed ID: 28193902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.
    Wang F; Zeng X; Yao Y; Sun R; Xu J; Wong CP
    Sci Rep; 2016 Jan; 6():19394. PubMed ID: 26783258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liquid Metal Droplets-Based Elastomers from Electric Toothbrush-Inspired Revolving Microfluidics.
    Wang Y; Li J; Sun L; Chen H; Ye F; Zhao Y; Shang L
    Adv Mater; 2023 May; 35(20):e2211731. PubMed ID: 36881673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites.
    Ford MJ; Patel DK; Pan C; Bergbreiter S; Majidi C
    Adv Mater; 2020 Nov; 32(46):e2002929. PubMed ID: 33043492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response-Surface-Methodology-Based Increasing of the Isotropic Thermal Conductivity of Polyethylene Composites Containing Multiple Fillers.
    Ohnmacht H; Fiorio R; Wieme T; D'hooge DR; Cardon L; Edeleva M
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Performance Liquid Metal/Polyborosiloxane Elastomer toward Thermally Conductive Applications.
    Zhao C; Wang Y; Gao L; Xu Y; Fan Z; Liu X; Ni Y; Xuan S; Deng H; Gong X
    ACS Appl Mater Interfaces; 2022 May; 14(18):21564-21576. PubMed ID: 35475337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization.
    Cao C; Huang X; Lv D; Ai L; Chen W; Hou C; Yi B; Luo J; Yao X
    Mater Horiz; 2021 Nov; 8(12):3399-3408. PubMed ID: 34679157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soft Multifunctional Composites and Emulsions with Liquid Metals.
    Kazem N; Hellebrekers T; Majidi C
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28425667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects.
    Chaudhry AU; Mabrouk AN; Abdala A
    Sci Technol Adv Mater; 2020 Nov; 21(1):737-766. PubMed ID: 33192179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Integrated Approach to Design and Develop High-Performance Polymer-Composite Thermal Interface Material.
    Akhtar SS
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network topologies dictate electromechanical coupling in liquid metal-elastomer composites.
    Zolfaghari N; Khandagale P; Ford MJ; Dayal K; Majidi C
    Soft Matter; 2020 Oct; 16(38):8818-8825. PubMed ID: 32724964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.