These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34491750)
1. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
2. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567 [TBL] [Abstract][Full Text] [Related]
3. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Guo S; Yang L; Hou C; Jiang S; Ma X; Shi L; Zheng B; Ye L; He X Int J Biol Macromol; 2024 Oct; 277(Pt 4):134562. PubMed ID: 39116982 [TBL] [Abstract][Full Text] [Related]
4. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. Pal P; Chakraborty S; Jana B J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044 [TBL] [Abstract][Full Text] [Related]
5. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
6. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Khan NMU; Arai T; Tsuda S; Kondo H Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595 [TBL] [Abstract][Full Text] [Related]
7. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. Drori R; Celik Y; Davies PL; Braslavsky I J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081 [TBL] [Abstract][Full Text] [Related]
8. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
9. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein. Kuffel A; Czapiewski D; Zielkiewicz J J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616 [TBL] [Abstract][Full Text] [Related]
10. The basis for hyperactivity of antifreeze proteins. Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111 [TBL] [Abstract][Full Text] [Related]
11. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. Midya US; Bandyopadhyay S J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212 [TBL] [Abstract][Full Text] [Related]
12. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740 [TBL] [Abstract][Full Text] [Related]
13. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
14. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
15. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
16. Influence of antifreeze proteins on the ice/water interface. Todde G; Hovmöller S; Laaksonen A J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783 [TBL] [Abstract][Full Text] [Related]
17. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018 [TBL] [Abstract][Full Text] [Related]
18. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related]
19. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341 [TBL] [Abstract][Full Text] [Related]
20. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]