These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34491759)

  • 1. Biochemical Tools for Tracking Proteolysis.
    Wang L; Main K; Wang H; Julien O; Dufour A
    J Proteome Res; 2021 Dec; 20(12):5264-5279. PubMed ID: 34491759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Terminomics Strategies for Protease Substrates Profiling.
    Mintoo M; Chakravarty A; Tilvawala R
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No Substrate Left behind-Mining of Shotgun Proteomics Datasets Rescues Evidence of Proteolysis by SARS-CoV-2 3CL
    Bell PA; Overall CM
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics Analysis Reveals That Caspase-Like and Metacaspase-Like Activities Are Dispensable for Activation of Proteases Involved in Early Response to Biotic Stress in
    Balakireva AV; Deviatkin AA; Zgoda VG; Kartashov MI; Zhemchuzhina NS; Dzhavakhiya VG; Golovin AV; Zamyatnin AA
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protease Substrate Identification Using N-terminomics.
    Luo SY; Araya LE; Julien O
    ACS Chem Biol; 2019 Nov; 14(11):2361-2371. PubMed ID: 31368682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis.
    Radisky ES
    J Biol Chem; 2024 Jun; 300(6):107347. PubMed ID: 38718867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations.
    Mallia-Milanes B; Dufour A; Philp C; Solis N; Klein T; Fischer M; Bolton CE; Shapiro S; Overall CM; Johnson SR
    Am J Physiol Lung Cell Mol Physiol; 2018 Dec; 315(6):L1003-L1014. PubMed ID: 30284925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sequence and structure based method to predict putative substrates, functions and regulatory networks of endo proteases.
    Venkatraman P; Balakrishnan S; Rao S; Hooda Y; Pol S
    PLoS One; 2009 May; 4(5):e5700. PubMed ID: 19492082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-based probes as a tool for functional proteomic analysis of proteases.
    Fonović M; Bogyo M
    Expert Rev Proteomics; 2008 Oct; 5(5):721-30. PubMed ID: 18937562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed protease-based signaling networks.
    Fink T; Jerala R
    Curr Opin Chem Biol; 2022 Jun; 68():102146. PubMed ID: 35430555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteases: Pivot Points in Functional Proteomics.
    Verhamme IM; Leonard SE; Perkins RC
    Methods Mol Biol; 2019; 1871():313-392. PubMed ID: 30276748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circulating Peptidome and Tumor-Resident Proteolysis.
    Fan J; Ning B; Lyon CJ; Hu TY
    Enzymes; 2017; 42():1-25. PubMed ID: 29054266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.
    Beers EP; Jones AM; Dickerman AW
    Phytochemistry; 2004 Jan; 65(1):43-58. PubMed ID: 14697270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification.
    Klein T; Eckhard U; Dufour A; Solis N; Overall CM
    Chem Rev; 2018 Feb; 118(3):1137-1168. PubMed ID: 29265812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics approaches for the identification of protease substrates during virus infection.
    Martiáñez-Vendrell X; Kikkert M
    Adv Virus Res; 2021; 109():135-161. PubMed ID: 33934826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.