BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 34491895)

  • 1. ACLY ubiquitination by CUL3-KLHL25 induces the reprogramming of fatty acid metabolism to facilitate iTreg differentiation.
    Tian M; Hao F; Jin X; Sun X; Jiang Y; Wang Y; Li D; Chang T; Zou Y; Peng P; Xia C; Liu J; Li Y; Wang P; Feng Y; Wei M
    Elife; 2021 Sep; 10():. PubMed ID: 34491895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression.
    Zhang C; Liu J; Huang G; Zhao Y; Yue X; Wu H; Li J; Zhu J; Shen Z; Haffty BG; Hu W; Feng Z
    Genes Dev; 2016 Sep; 30(17):1956-70. PubMed ID: 27664236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ATP citrate lyase induces triglyceride accumulation with altered fatty acid composition in cancer cells.
    Migita T; Okabe S; Ikeda K; Igarashi S; Sugawara S; Tomida A; Soga T; Taguchi R; Seimiya H
    Int J Cancer; 2014 Jul; 135(1):37-47. PubMed ID: 24310723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation.
    Hao F; Tian M; Zhang X; Jin X; Jiang Y; Sun X; Wang Y; Peng P; Liu J; Xia C; Feng Y; Wei M
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34035164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitination of PPAR-gamma by pVHL inhibits ACLY expression and lipid metabolism, is implicated in tumor progression.
    Noh KH; Kang HM; Yoo W; Min Y; Kim D; Kim M; Wang S; Lim JH; Jung CR
    Metabolism; 2020 Sep; 110():154302. PubMed ID: 32589900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms.
    Zaidi N; Royaux I; Swinnen JV; Smans K
    Mol Cancer Ther; 2012 Sep; 11(9):1925-35. PubMed ID: 22718913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth.
    Lin R; Tao R; Gao X; Li T; Zhou X; Guan KL; Xiong Y; Lei QY
    Mol Cell; 2013 Aug; 51(4):506-518. PubMed ID: 23932781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease.
    Guo L; Guo YY; Li BY; Peng WQ; Chang XX; Gao X; Tang QQ
    J Biol Chem; 2019 Aug; 294(31):11805-11816. PubMed ID: 31197036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells.
    Chu KY; Lin Y; Hendel A; Kulpa JE; Brownsey RW; Johnson JD
    J Biol Chem; 2010 Oct; 285(42):32606-15. PubMed ID: 20693577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-citrate lyase: genetics, molecular biology and therapeutic target for dyslipidemia.
    Burke AC; Huff MW
    Curr Opin Lipidol; 2017 Apr; 28(2):193-200. PubMed ID: 28059952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-citrate lyase: a key player in cancer metabolism.
    Zaidi N; Swinnen JV; Smans K
    Cancer Res; 2012 Aug; 72(15):3709-14. PubMed ID: 22787121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism.
    Granchi C
    Eur J Med Chem; 2018 Sep; 157():1276-1291. PubMed ID: 30195238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hrd1-mediated ACLY ubiquitination alleviate NAFLD in db/db mice.
    Li K; Zhang K; Wang H; Wu Y; Chen N; Chen J; Qiu C; Cai P; Li M; Liang X; Su D
    Metabolism; 2021 Jan; 114():154349. PubMed ID: 32888949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway.
    Lee JH; Jang H; Lee SM; Lee JE; Choi J; Kim TW; Cho EJ; Youn HD
    FEBS J; 2015 Jan; 282(2):361-71. PubMed ID: 25367309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acly promotes metabolic reprogramming and induction of IRF4 during early CD8
    Vaughn N; Haviland DL
    Cytometry A; 2021 Aug; 99(8):825-831. PubMed ID: 33325591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key Molecules of Fatty Acid Metabolism in Gastric Cancer.
    Li C; Zhang L; Qiu Z; Deng W; Wang W
    Biomolecules; 2022 May; 12(5):. PubMed ID: 35625633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Steatotic Cells, ATP-Citrate Lyase mRNA Is Efficiently Translated through a Cap-Independent Mechanism, Contributing to the Stimulation of De Novo Lipogenesis.
    Siculella L; Giannotti L; Testini M; Gnoni GV; Damiano F
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32054087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP citrate lyase (ACLY): a promising target for cancer prevention and treatment.
    Khwairakpam AD; Shyamananda MS; Sailo BL; Rathnakaram SR; Padmavathi G; Kotoky J; Kunnumakkara AB
    Curr Drug Targets; 2015; 16(2):156-63. PubMed ID: 25537655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency in hepatic ATP-citrate lyase affects VLDL-triglyceride mobilization and liver fatty acid composition in mice.
    Wang Q; Li S; Jiang L; Zhou Y; Li Z; Shao M; Li W; Liu Y
    J Lipid Res; 2010 Sep; 51(9):2516-26. PubMed ID: 20488800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic functions of MORC2 in lipogenesis and adipogenesis.
    Sánchez-Solana B; Li DQ; Kumar R
    Biochim Biophys Acta; 2014 Feb; 1843(2):316-26. PubMed ID: 24286864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.