These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34492004)

  • 1. ASCENT (Automated Simulations to Characterize Electrical Nerve Thresholds): A pipeline for sample-specific computational modeling of electrical stimulation of peripheral nerves.
    Musselman ED; Cariello JE; Grill WM; Pelot NA
    PLoS Comput Biol; 2021 Sep; 17(9):e1009285. PubMed ID: 34492004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes.
    Zellmer ER; MacEwan MR; Moran DW
    J Neural Eng; 2018 Apr; 15(2):026009. PubMed ID: 29192607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiscale Approach to Axon and Nerve Stimulation Modeling: A Review.
    Stefano M; Cordella F; Loppini A; Filippi S; Zollo L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():397-407. PubMed ID: 33497336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate simulation of cuff electrode stimulation predicting in-vivo strength-duration thresholds.
    Lazorchak N; Horn MR; Muzquiz MI; Mintch LM; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2073-2084. PubMed ID: 35896504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode Spacing and Current Distribution in Electrical Stimulation of Peripheral Nerve: A Computational Modeling Study using Realistic Nerve Models.
    Du J; Morales A; Paknahad J; Kosta P; Bouteiller JC; Fernandez E; Lazzi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4416-4419. PubMed ID: 34892199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibers in smaller fascicles have lower activation thresholds with cuff electrodes due to thinner perineurium and smaller cross-sectional area.
    Davis CJ; Musselman ED; Grill WM; Pelot NA
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36917856
    [No Abstract]   [Full Text] [Related]  

  • 7. Fascicle specific targeting for selective peripheral nerve stimulation.
    Overstreet CK; Cheng J; Keefer EW
    J Neural Eng; 2019 Nov; 16(6):066040. PubMed ID: 31509815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tutorial: a computational framework for the design and optimization of peripheral neural interfaces.
    Romeni S; Valle G; Mazzoni A; Micera S
    Nat Protoc; 2020 Oct; 15(10):3129-3153. PubMed ID: 32989306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Modeling of an Endovascular Peripheral Nerve Interface.
    Liu J; Grayden DB; Keast JR; John SE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5966-5969. PubMed ID: 34892477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the activating function of magnetic stimulation using combined electrical and magnetic stimuli.
    Garnham CW; Barker AT; Freeston IL
    J Med Eng Technol; 1995; 19(2-3):57-61. PubMed ID: 7494210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes.
    Navarro X; Calvet S; Rodríguez FJ; Stieglitz T; Blau C; Butí M; Valderrama E; Meyer JU
    J Peripher Nerv Syst; 1998; 3(2):91-101. PubMed ID: 10959242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct current electrical conduction block of peripheral nerve.
    Bhadra N; Kilgore KL
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):313-24. PubMed ID: 15473193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber size-selective stimulation using action potential filtering for a peripheral nerve interface: A simulation study.
    Rapeaux A; Nikolic K; Williams I; Eftekhar A; Constandinou TG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3411-4. PubMed ID: 26737025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the parameters used in finite element modeling of compound peripheral nerves.
    Pelot NA; Behrend CE; Grill WM
    J Neural Eng; 2019 Feb; 16(1):016007. PubMed ID: 30507555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bipolar cuff electrode design on block thresholds in high-frequency electrical neural conduction block.
    Ackermann DM; Foldes EL; Bhadra N; Kilgore KL
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):469-77. PubMed ID: 19840914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating bidirectional peripheral neural interfaces in EIDORS.
    Eiber CD; Keast JR; Osborne PB
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2934-2937. PubMed ID: 33018621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Localization of peripheral nerves. Success and safety with electrical nerve stimulation].
    Neuburger M; Schwemmer U; Volk T; Gogarten W; Kessler P; Steinfeldt T
    Anaesthesist; 2014 May; 63(5):422-8. PubMed ID: 24715260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art.
    Günter C; Delbeke J; Ortiz-Catalan M
    J Neuroeng Rehabil; 2019 Jan; 16(1):13. PubMed ID: 30658656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
    Christie BP; Freeberg M; Memberg WD; Pinault GJC; Hoyen HA; Tyler DJ; Triolo RJ
    J Neuroeng Rehabil; 2017 Jul; 14(1):70. PubMed ID: 28693584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.