These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34492086)

  • 1. Fishing trip cost modeling using generalized linear model and machine learning methods - A case study with longline fisheries in the Pacific and an application in Regulatory Impact Analysis.
    Chan HL; Pan M
    PLoS One; 2021; 16(9):e0257027. PubMed ID: 34492086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling protected species as an undesirable output: the case of sea turtle interactions in Hawaii's longline fishery.
    Huang H; Leung P
    J Environ Manage; 2007 Sep; 84(4):523-33. PubMed ID: 17010504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative abundance of derelict fishing gear in the Hawaii-based pelagic longline fishery grounds as estimated from fishery observer data.
    Uhrin AV; Walsh WA; Brodziak J
    Sci Rep; 2020 May; 10(1):7767. PubMed ID: 32385313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Killer whale depredation and associated costs to Alaskan sablefish, Pacific halibut and Greenland turbot longliners.
    Peterson MJ; Mueter F; Criddle K; Haynie AC
    PLoS One; 2014; 9(2):e88906. PubMed ID: 24558446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Vessel Monitoring System Data to Identify and Characterize Trips Made by Fishing Vessels in the United States North Pacific.
    Watson JT; Haynie AC
    PLoS One; 2016; 11(10):e0165173. PubMed ID: 27788174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuna longline fishing around West and Central Pacific seamounts.
    Morato T; Hoyle SD; Allain V; Nicol SJ
    PLoS One; 2010 Dec; 5(12):e14453. PubMed ID: 21206913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective time closures: quantifying the conservation benefits of input control for the Pacific chub mackerel fishery.
    Ichinokawa M; Okamura H; Watanabe C; Kawabata A; Oozeki Y
    Ecol Appl; 2015 Sep; 25(6):1566-84. PubMed ID: 26552265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery.
    Gilman E; Evans T; Pollard I; Chaloupka M
    Sci Rep; 2023 Feb; 13(1):2621. PubMed ID: 36788342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fishery-induced changes in the subtropical Pacific pelagic ecosystem size structure: observations and theory.
    Polovina JJ; Woodworth-Jefcoats PA
    PLoS One; 2013; 8(4):e62341. PubMed ID: 23620824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle.
    Gjertsen H; Squires D; Dutton PH; Eguchi T
    Conserv Biol; 2014 Feb; 28(1):140-9. PubMed ID: 24405417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of fishing on a highly vulnerable ecosystem, the case of Juan Fernández Ridge ecosystem.
    Porobic J; Fulton EA; Parada C; Frusher S; Ernst B; Manríquez P
    PLoS One; 2019; 14(2):e0212485. PubMed ID: 30794609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating socio-economic and conservation impacts of management: A case study of time-area closures on Georges Bank.
    Keith DM; Sameoto JA; Keyser FM; Ward-Paige CA
    PLoS One; 2020; 15(10):e0240322. PubMed ID: 33048972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine protected areas and the value of spatially optimized fishery management.
    Rassweiler A; Costello C; Siegel DA
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11884-9. PubMed ID: 22753469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a hurdle negative binomial count data model to demand for bass fishing in the southeastern United States.
    Bilgic A; Florkowski WJ
    J Environ Manage; 2007 Jun; 83(4):478-90. PubMed ID: 17166648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global fishery development patterns are driven by profit but not trophic level.
    Sethi SA; Branch TA; Watson R
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12163-7. PubMed ID: 20566867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of observer monitoring program designs for Chinese tuna longline fisheries in the Pacific Ocean using computer simulations.
    Wang J; Gao X; Chen J; Dai X; Tian S; Chen Y
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12628-12639. PubMed ID: 33085010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of two of the world's largest protected areas on longline fishery catch rates.
    Lynham J; Nikolaev A; Raynor J; Vilela T; Villaseñor-Derbez JC
    Nat Commun; 2020 Feb; 11(1):979. PubMed ID: 32080189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of fishing effort distributions using boosted regression trees.
    Soykan CU; Eguchi T; Kohin S; Dewar H
    Ecol Appl; 2014 Jan; 24(1):71-83. PubMed ID: 24640535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of rights-based fisheries management on risk taking and fishing safety.
    Pfeiffer L; Gratz T
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2615-20. PubMed ID: 26884188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for integrating economic impact analysis into the evaluation of potential marine protected area sites.
    Dalton TM
    J Environ Manage; 2004 Apr; 70(4):333-49. PubMed ID: 15016442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.