BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34492242)

  • 1. Improvement of the strength and toughness of biodegradable polylactide/silica nanocomposites by uniaxial pre-stretching.
    Chen Y; Han L; Zhang H; Dong L
    Int J Biol Macromol; 2021 Nov; 190():198-205. PubMed ID: 34492242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites.
    Kumar M; Mohanty S; Nayak SK; Rahail Parvaiz M
    Bioresour Technol; 2010 Nov; 101(21):8406-15. PubMed ID: 20573502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance and multi-scale investigation on the phase miscibility of poly(lactic acid)/amided silica nanocomposites.
    Luo D; Zhen W; Dong C; Zhao L
    Int J Biol Macromol; 2021 Apr; 177():271-283. PubMed ID: 33621566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties.
    Chai H; Chang Y; Zhang Y; Chen Z; Zhong Y; Zhang L; Sui X; Xu H; Mao Z
    Int J Biol Macromol; 2020 Jul; 155():1578-1588. PubMed ID: 31751689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer.
    Fang H; Jiang F; Wu Q; Ding Y; Wang Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13552-63. PubMed ID: 25105468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.
    Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M
    J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids.
    Bai T; Zhu B; Liu H; Wang Y; Song G; Liu C; Shen C
    Int J Biol Macromol; 2020 May; 151():628-634. PubMed ID: 32092421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polylactide-based bionanocomposites: a promising class of hybrid materials.
    Sinha Ray S
    Acc Chem Res; 2012 Oct; 45(10):1710-20. PubMed ID: 22953971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer.
    Li Y; Shimizu H
    Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage.
    Lai L; Wang S; Li J; Liu P; Wu L; Wu H; Xu J; Severtson SJ; Wang WJ
    Carbohydr Polym; 2020 Nov; 247():116687. PubMed ID: 32829815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends.
    Jiang L; Wolcott MP; Zhang J
    Biomacromolecules; 2006 Jan; 7(1):199-207. PubMed ID: 16398516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Modification of Basalt Fibres with ZnO Nanorods and Its Effect on Thermal and Mechanical Properties of PLA-Based Composites.
    Sbardella F; Martinelli A; Di Lisio V; Bavasso I; Russo P; Tirillò J; Sarasini F
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33535423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.
    Arjmandi R; Hassan A; Haafiz MK; Zakaria Z; Islam MS
    Int J Biol Macromol; 2016 Jan; 82():998-1010. PubMed ID: 26592699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barrier Properties and Characterizations of Poly(lactic Acid)/ZnO Nanocomposites.
    Tang Z; Fan F; Chu Z; Fan C; Qin Y
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32183008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polylactide/montmorillonite nanocomposites.
    Ray SS; Yamada K; Okamoto M; Ueda K
    J Nanosci Nanotechnol; 2003 Dec; 3(6):503-10. PubMed ID: 15002130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films.
    Jayaramudu J; Das K; Sonakshi M; Siva Mohan Reddy G; Aderibigbe B; Sadiku R; Sinha Ray S
    Int J Biol Macromol; 2014 Mar; 64():428-34. PubMed ID: 24380815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and Optical Properties of Silicon OxideLignin Polylactide (SiO2-L-PLA).
    Fal J; Bulanda K; Traciak J; Sobczak J; Kuzioła R; Grąz KM; Budzik G; Oleksy M; Żyła G
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32188125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcing Effects of Poly(D-Lactide)-g-Multiwall Carbon Nanotubes on Polylactide Nanocomposites.
    Yang JH; Lee JY; Chin IJ
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8086-92. PubMed ID: 26726467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends.
    Li Y; Han C; Yu Y; Huang D
    Int J Biol Macromol; 2019 May; 129():1-12. PubMed ID: 30731159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-based polymer nanofiber with siliceous sponge spicules prepared by electrospinning: Preparation, characterisation, and functionalisation.
    Wu CS; Wu DY; Wang SS
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110506. PubMed ID: 31923929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.