BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 34492338)

  • 21. Use of whole-genome sequence data and novel genomic selection strategies to improve selection for age at puberty in tropically-adapted beef heifers.
    Warburton CL; Engle BN; Ross EM; Costilla R; Moore SS; Corbet NJ; Allen JM; Laing AR; Fordyce G; Lyons RE; McGowan MR; Burns BM; Hayes BJ
    Genet Sel Evol; 2020 May; 52(1):28. PubMed ID: 32460805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar).
    Bangera R; Correa K; Lhorente JP; Figueroa R; Yáñez JM
    BMC Genomics; 2017 Jan; 18(1):121. PubMed ID: 28143402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
    Su G; Christensen OF; Janss L; Lund MS
    J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.
    Müller BSF; Neves LG; de Almeida Filho JE; Resende MFR; Muñoz PR; Dos Santos PET; Filho EP; Kirst M; Grattapaglia D
    BMC Genomics; 2017 Jul; 18(1):524. PubMed ID: 28693539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring Machine Learning Algorithms to Unveil Genomic Regions Associated With Resistance to Southern Root-Knot Nematode in Soybeans.
    Canella Vieira C; Zhou J; Usovsky M; Vuong T; Howland AD; Lee D; Li Z; Zhou J; Shannon G; Nguyen HT; Chen P
    Front Plant Sci; 2022; 13():883280. PubMed ID: 35592556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implementing a QTL detection study (GWAS) using genomic prediction methodology.
    Garrick DJ; Fernando RL
    Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep.
    Zhu S; Guo T; Yuan C; Liu J; Li J; Han M; Zhao H; Wu Y; Sun W; Wang X; Wang T; Liu J; Tiambo CK; Yue Y; Yang B
    G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34849779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations.
    Moghaddar N; Khansefid M; van der Werf JHJ; Bolormaa S; Duijvesteijn N; Clark SA; Swan AA; Daetwyler HD; MacLeod IM
    Genet Sel Evol; 2019 Dec; 51(1):72. PubMed ID: 31805849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle.
    Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU
    Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array.
    Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH
    J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers.
    Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW
    Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic prediction based on data from three layer lines: a comparison between linear methods.
    Calus MP; Huang H; Vereijken A; Visscher J; Ten Napel J; Windig JJ
    Genet Sel Evol; 2014 Oct; 46(1):57. PubMed ID: 25927219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat.
    Ali M; Zhang Y; Rasheed A; Wang J; Zhang L
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane.
    Xiong H; Chen Y; Pan YB; Shi A
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of genotype-calling methodologies on genome-wide association and genomic prediction in polyploids.
    Njuguna JN; Clark LV; Lipka AE; Anzoua KG; Bagmet L; Chebukin P; Dwiyanti MS; Dzyubenko E; Dzyubenko N; Ghimire BK; Jin X; Johnson DA; Kjeldsen JB; Nagano H; de Bem Oliveira I; Peng J; Petersen KK; Sabitov A; Seong ES; Yamada T; Yoo JH; Yu CY; Zhao H; Munoz P; Long SP; Sacks EJ
    Plant Genome; 2023 Dec; 16(4):e20401. PubMed ID: 37903749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regularized multi-trait multi-locus linear mixed models for genome-wide association studies and genomic selection in crops.
    Lozano AC; Ding H; Abe N; Lipka AE
    BMC Bioinformatics; 2023 Oct; 24(1):399. PubMed ID: 37884874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize.
    Kaler AS; Gillman JD; Beissinger T; Purcell LC
    Front Plant Sci; 2019; 10():1794. PubMed ID: 32158452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.