BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34492370)

  • 1. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method.
    Shu W; Heimark H; Bertollo N; Tobin DJ; O'Cearbhaill ED; Annaidh AN
    Acta Biomater; 2021 Nov; 135():403-413. PubMed ID: 34492370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of three-section microneedle towards low insertion force and high drug delivery amount using the finite element method.
    Zhang L; Zhu C; Shi J; Zhou Z; Ge D
    Comput Methods Biomech Biomed Engin; 2024; 27(2):156-166. PubMed ID: 36762916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis and optimization of microneedle arrays for transdermal vaccine delivery: comparison of coated and dissolving microneedles.
    Yolai N; Suttirat P; Leelawattanachai J; Boonyasiriwat C; Modchang C
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(12):1379-1387. PubMed ID: 36048187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin.
    Kochhar JS; Quek TC; Soon WJ; Choi J; Zou S; Kang L
    J Pharm Sci; 2013 Nov; 102(11):4100-8. PubMed ID: 24027112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model.
    Römgens AM; Bader DL; Bouwstra JA; Oomens CW
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1599-609. PubMed ID: 27557398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter optimization toward optimal microneedle-based dermal vaccination.
    van der Maaden K; Varypataki EM; Yu H; Romeijn S; Jiskoot W; Bouwstra J
    Eur J Pharm Sci; 2014 Nov; 64():18-25. PubMed ID: 25151530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis.
    Loizidou EZ; Inoue NT; Ashton-Barnett J; Barrow DA; Allender CJ
    Eur J Pharm Biopharm; 2016 Oct; 107():1-6. PubMed ID: 27373753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro.
    Xenikakis I; Tzimtzimis M; Tsongas K; Andreadis D; Demiri E; Tzetzis D; Fatouros DG
    Eur J Pharm Sci; 2019 Sep; 137():104976. PubMed ID: 31254642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cleanroom and Template Free Fabrication of Single Polygonal Shaped Microneedle.
    Mani GK; Miyachi K; Tsuchiya K
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4861-4864. PubMed ID: 33691879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the mechanical properties of human skin to optimise future microneedle device design.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    Comput Methods Biomech Biomed Engin; 2012; 15(1):73-82. PubMed ID: 21749225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force.
    Davis SP; Landis BJ; Adams ZH; Allen MG; Prausnitz MR
    J Biomech; 2004 Aug; 37(8):1155-63. PubMed ID: 15212920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive Manufacturing of Honeybee-Inspired Microneedle for Easy Skin Insertion and Difficult Removal.
    Chen Z; Lin Y; Lee W; Ren L; Liu B; Liang L; Wang Z; Jiang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29338-29346. PubMed ID: 30091892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches.
    Olatunji O; Das DB; Garland MJ; Belaid L; Donnelly RF
    J Pharm Sci; 2013 Apr; 102(4):1209-21. PubMed ID: 23359221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct microneedle array fabrication off a photomask to deliver collagen through skin.
    Kochhar JS; Anbalagan P; Shelar SB; Neo JK; Iliescu C; Kang L
    Pharm Res; 2014 Jul; 31(7):1724-34. PubMed ID: 24449441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microneedle-based drug delivery systems for transdermal route.
    Pierre MB; Rossetti FC
    Curr Drug Targets; 2014 Mar; 15(3):281-91. PubMed ID: 24144208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the penetration process of single microneedles with varying tip diameters.
    Römgens AM; Bader DL; Bouwstra JA; Baaijens FPT; Oomens CWJ
    J Mech Behav Biomed Mater; 2014 Dec; 40():397-405. PubMed ID: 25305633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin.
    Moronkeji K; Todd S; Dawidowska I; Barrett SD; Akhtar R
    J Control Release; 2017 Nov; 265():102-112. PubMed ID: 27838272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis and simulation of solid microneedle array for vaccine delivery applications.
    S B V J C; Mannayee G
    Mater Today Proc; 2022; 65():3774-3779. PubMed ID: 35855948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of the relationship between microneedle spacing, needle force and skin strain during the indentation phase prior to skin penetration.
    Potts MR; Evans SL; Pullin R; Coulman SA; Birchall JC; Wyatt H
    Comput Methods Biomech Biomed Engin; 2023; 26(14):1719-1731. PubMed ID: 36420964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.