These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34492457)

  • 21. Self-assembling properties of mono and di-rhamnolipids characterized using small-angle X-ray scattering.
    Motta AM; Mariani P; Itri R; Spinozzi F
    Colloids Surf B Biointerfaces; 2024 Sep; 241():114038. PubMed ID: 38905813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tannic Acid-Mediated Aggregate Stabilization of Poly(
    Al Nakeeb N; Nischang I; Schmidt BVKJ
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amphiphilic Block Copolymers PEG-
    Deng Y; Schäfer S; Kronstein D; Atabay A; Susewind M; Krieg E; Seiffert S; Gaitzsch J
    Biomacromolecules; 2024 Jan; 25(1):303-314. PubMed ID: 38039186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning small molecule release from polymer micelles: Varying H
    Carrazzone RJ; Foster JC; Li Z; Matson JB
    Eur Polym J; 2020 Dec; 141():. PubMed ID: 33162563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies.
    Lukáš Petrova S; Sincari V; Pavlova E; Pokorný V; Lobaz V; Hrubý M
    ACS Polym Au; 2024 Aug; 4(4):331-341. PubMed ID: 39156556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micelle formation of sodium taurolithocholate.
    Matsuoka K; Sekiguchi R; Yoshimura T
    Chem Phys Lipids; 2024 Mar; 259():105378. PubMed ID: 38325711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supramolecular Functionalizable Linear-Dendritic Block Copolymers for the Preparation of Nanocarriers by Microfluidics.
    Abad M; Martínez-Bueno A; Mendoza G; Arruebo M; Oriol L; Sebastián V; Piñol M
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances.
    Wonder EA; Ewert KK; Liu C; Steffes VM; Kwak J; Qahar V; Majzoub RN; Zhang Z; Carragher B; Potter CS; Li Y; Qiao W; Safinya CR
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45728-45743. PubMed ID: 32960036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(Sitosterol)-Based Hydrophobic Blocks in Amphiphilic Block Copolymers for the Assembly of Hybrid Vesicles.
    Brodszkij E; Ryberg C; Lyons JA; Juhl DW; Nielsen NC; Sigalas NI; Lyulin AV; Pedersen JS; Städler B
    Small; 2024 Jun; ():e2401934. PubMed ID: 38860565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulating the Chiroptical Expression of Aggregated Solvophobic Core by Solvophilic Segments.
    Wang Y; Guo J; He Z; Zhou Z; Shi S; Cheng X; Zhang W
    Macromol Rapid Commun; 2024 Apr; ():e2400178. PubMed ID: 38683103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of Fatty acid/amino Acid self-assemblies.
    Gajowy J; Bolikal D; Kohn J; Fray ME
    J Funct Biomater; 2014 Oct; 5(4):211-31. PubMed ID: 25347356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoresponsive Block Copolymer Nanostructures through Implementation of Arylazopyrazoles.
    Ziegler K; Schlichter L; Post Y; Gröschel AH; Ravoo BJ
    ACS Macro Lett; 2024 Aug; 13(8):1065-1071. PubMed ID: 39094101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-Temperature Processable Degradable Polyesters.
    Taniguchi I; Lovell NG
    Macromolecules; 2012 Sep; 45(18):7420-7428. PubMed ID: 23074354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Block Ratio and Structure on the Thermosensitivity of Double and Triple Betaine Block Copolymers.
    Lim J; Matsuoka H; Kinoshita Y; Yusa SI; Saruwatari Y
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crafting Stable Antibiotic Nanoparticles via Complex Coacervation of Colistin with Block Copolymers.
    Vogelaar TD; Agger AE; Reseland JE; Linke D; Jenssen H; Lund R
    Biomacromolecules; 2024 Jul; 25(7):4267-4280. PubMed ID: 38886154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Pore-Like" Effects of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) in Water.
    Ulrich K; Galvosas P; Kärger J; Grinberg F
    Materials (Basel); 2012 May; 5(5):966-984. PubMed ID: 28817019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coacervation in Slow Motion: Kinetics of Complex Micelle Formation Induced by the Hydrolysis of an Antibiotic Prodrug.
    Vogelaar TD; Szostak SM; Lund R
    Mol Pharm; 2024 Aug; 21(8):4157-4168. PubMed ID: 39011839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Insight into the Effect of Polymer Topology on Wettability of Block Copolymers: The Case of Amphiphilic Polyurethanes.
    Mirzaalipour A; Aghamohammadi E; Vakili H; Khodabakhsh M; Unal U; Makki H
    Langmuir; 2024 Jan; 40(1):62-71. PubMed ID: 38100712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the Structure and Equilibrium Conditions of Complex Coacervate Core Micelles by Varying Their Shell Composition and Medium Ionic Strength.
    Sabadini JB; Oliveira CLP; Loh W
    Langmuir; 2024 Jan; 40(4):2015-2027. PubMed ID: 38240211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting.
    Bronstein LM; Shtykova EV; Malyutin A; Dyke JC; Gunn E; Gao X; Stein B; Konarev PV; Dragnea B; Svergun DI
    J Phys Chem C Nanomater Interfaces; 2010 Dec; 114(50):21900-21907. PubMed ID: 21221425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.