These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34492679)
61. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Li J; Liu D; Tan G; Zhao Z; Yang X; Pan W Carbohydr Polym; 2016 Aug; 146():435-44. PubMed ID: 27112894 [TBL] [Abstract][Full Text] [Related]
62. Encapsulation of oyster protein hydrolysates in nanoliposomes: Vesicle characteristics, storage stability, in vitro release, and gastrointestinal digestion. Xu J; Jiang S; Liu L; Zhao Y; Zeng M J Food Sci; 2021 Mar; 86(3):960-968. PubMed ID: 33527408 [TBL] [Abstract][Full Text] [Related]
63. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Wang Y; Zhou L; Fang L; Cao F Acta Biomater; 2020 Mar; 104():104-114. PubMed ID: 31931169 [TBL] [Abstract][Full Text] [Related]
64. Enhanced physicochemical stability of ω-3 PUFAs concentrates-loaded nanoliposomes decorated by chitosan/gelatin blend coatings. Hosseini SF; Soofi M; Rezaei M Food Chem; 2021 May; 345():128865. PubMed ID: 33601664 [TBL] [Abstract][Full Text] [Related]
65. Evaluation of Chitosan Derivatives Modified Mesoporous Silica Nanoparticles as Delivery Carrier. Li Q; Wang W; Hu G; Cui X; Sun D; Jin Z; Zhao K Molecules; 2021 Apr; 26(9):. PubMed ID: 33923304 [TBL] [Abstract][Full Text] [Related]
66. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Yao Y; Su Z; Liang Y; Zhang N Int J Nanomedicine; 2015; 10():6185-97. PubMed ID: 26491291 [TBL] [Abstract][Full Text] [Related]
67. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. Li P; Liu D; Miao L; Liu C; Sun X; Liu Y; Zhang N Int J Nanomedicine; 2012; 7():925-39. PubMed ID: 22393290 [TBL] [Abstract][Full Text] [Related]
68. Comparison in docetaxel-loaded nanoparticles based on three different carboxymethyl chitosans. Zhang E; Xing R; Liu S; Li K; Qin Y; Yu H; Li P Int J Biol Macromol; 2017 Aug; 101():1012-1018. PubMed ID: 28389400 [TBL] [Abstract][Full Text] [Related]
69. Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Bang SH; Hwang IC; Yu YM; Kwon HR; Kim DH; Park HJ J Microencapsul; 2011; 28(7):595-604. PubMed ID: 21861589 [TBL] [Abstract][Full Text] [Related]
70. Preparation and characterization of medium-chain fatty acid liposomes by lyophilization. Liu C; Yang S; Liu W; Wang R; Wan J; Liu W J Liposome Res; 2010 Sep; 20(3):183-90. PubMed ID: 19848446 [TBL] [Abstract][Full Text] [Related]
71. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application in vitro. Tan YL; Liu CG Colloids Surf B Biointerfaces; 2009 Mar; 69(2):178-82. PubMed ID: 19124228 [TBL] [Abstract][Full Text] [Related]
72. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Gulzar S; Benjakul S Food Chem; 2020 Apr; 310():125916. PubMed ID: 31838370 [TBL] [Abstract][Full Text] [Related]
73. Carboxymethyl chitosan-decorated proliposomes as carriers for improved stability and sustained release of flaxseed oil. Song FF; Tian SJ; Chen FS; Sun XY; Zhang BB J Food Sci; 2020 Oct; 85(10):3237-3243. PubMed ID: 32860245 [TBL] [Abstract][Full Text] [Related]
74. Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Rao KM; Suneetha M; Park GT; Babu AG; Han SS Int J Biol Macromol; 2020 Jul; 155():71-80. PubMed ID: 32217121 [TBL] [Abstract][Full Text] [Related]
76. Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Bidgoli H; Zamani A; Taherzadeh MJ Carbohydr Res; 2010 Dec; 345(18):2683-9. PubMed ID: 20971451 [TBL] [Abstract][Full Text] [Related]
77. 1-MT grafted carboxymethyl chitosan and its nanoparticles: Preparation, characterization and evaluation. Li J; Han L; Zhan S; Li R; Wang Y; Qiu T; Zhang X Eur J Pharm Sci; 2021 Jul; 162():105829. PubMed ID: 33819624 [TBL] [Abstract][Full Text] [Related]
78. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077 [TBL] [Abstract][Full Text] [Related]
79. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Motiei M; Kashanian S Eur J Pharm Sci; 2017 Mar; 99():285-291. PubMed ID: 28057549 [TBL] [Abstract][Full Text] [Related]
80. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F; Yang Y; Ju X; Udenigwe CC; He R J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]