These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 34492775)
1. Chlorophenols in textile dyeing sludge: Pollution characteristics and environmental risk control. Chen X; Ning XA; Lai X; Wang Y; Zhang Y; He Y J Hazard Mater; 2021 Aug; 416():125721. PubMed ID: 34492775 [TBL] [Abstract][Full Text] [Related]
2. Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge. Zhang JH; Zou HY; Ning XA; Lin MQ; Chen CM; An TC; Sun J Environ Geochem Health; 2018 Oct; 40(5):1867-1876. PubMed ID: 28332173 [TBL] [Abstract][Full Text] [Related]
3. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants. Ning XA; Lin MQ; Shen LZ; Zhang JH; Wang JY; Wang YJ; Yang ZY; Liu JY Environ Res; 2014 Jul; 132():112-8. PubMed ID: 24769559 [TBL] [Abstract][Full Text] [Related]
4. Aromatic amine contents, component distributions and risk assessment in sludge from 10 textile-dyeing plants. Ning XA; Liang JY; Li RJ; Hong Z; Wang YJ; Chang KL; Zhang YP; Yang ZY Chemosphere; 2015 Sep; 134():367-73. PubMed ID: 25973862 [TBL] [Abstract][Full Text] [Related]
5. Formation of organic chloride in the treatment of textile dyeing sludge by Fenton system. Lai X; Ning XA; Li Y; Huang N; Zhang Y; Yang C J Environ Sci (China); 2023 Mar; 125():376-387. PubMed ID: 36375923 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient treatment of textile dyeing sludge by CO Wang M; Mao M; Zhang M; Wen G; Yang Q; Su B; Ren Q Waste Manag; 2019 May; 90():29-36. PubMed ID: 31088671 [TBL] [Abstract][Full Text] [Related]
7. Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: Role of sludge acclimation. Kayan I; Oz NA; Kantar C J Environ Manage; 2021 Feb; 279():111781. PubMed ID: 33307317 [TBL] [Abstract][Full Text] [Related]
8. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Liang X; Ning XA; Chen G; Lin M; Liu J; Wang Y Ecotoxicol Environ Saf; 2013 Dec; 98():128-34. PubMed ID: 24094414 [TBL] [Abstract][Full Text] [Related]
9. Sono-advanced Fenton-like degradation of aromatic amines in textile dyeing sludge: efficiency and mechanisms. Zou H; Ning XA; Wang Y; Sun J; Hong Y Environ Sci Pollut Res Int; 2019 Mar; 26(8):7810-7820. PubMed ID: 30680685 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater. Soares PA; Batalha M; Souza SM; Boaventura RA; Vilar VJ J Environ Manage; 2015 Apr; 152():120-31. PubMed ID: 25618444 [TBL] [Abstract][Full Text] [Related]
11. Treatment of simulated textile sludge using the Fenton/Cl Lai X; Ning XA; Zhang Y; Li Y; Li R; Chen J; Wu S Environ Res; 2021 Jun; 197():110997. PubMed ID: 33713713 [TBL] [Abstract][Full Text] [Related]
12. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Peng X; Ma X; Xu Z Bioresour Technol; 2015 Mar; 180():288-95. PubMed ID: 25618498 [TBL] [Abstract][Full Text] [Related]
13. Efficient removal of sixteen priority polycyclic aromatic hydrocarbons from textile dyeing sludge using electrochemical Fe Bai X; Sun H; Sun J; Zhu Z J Hazard Mater; 2022 Aug; 435():129087. PubMed ID: 35650734 [TBL] [Abstract][Full Text] [Related]
14. The agricultural use potential of the detoxified textile dyeing sludge by integrated Ultrasound/Fenton-like process: A comparative study. Zou H; Ning XA; Wang Y; Zhou F Ecotoxicol Environ Saf; 2019 May; 172():26-32. PubMed ID: 30669071 [TBL] [Abstract][Full Text] [Related]
15. Sludge treatment by integrated ultrasound-Fenton process: Characterization of sludge organic matter and its impact on PAHs removal. Ke Y; Ning XA; Liang J; Zou H; Sun J; Cai H; Lin M; Li R; Zhang Y J Hazard Mater; 2018 Feb; 343():191-199. PubMed ID: 28950207 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress. Han T; Zheng J; Han Y; Xu X; Li M; Schwarz C; Zhu L Sci Total Environ; 2021 Oct; 791():148145. PubMed ID: 34119788 [TBL] [Abstract][Full Text] [Related]
17. Textile dyeing industry: environmental impacts and remediation. Khattab TA; Abdelrahman MS; Rehan M Environ Sci Pollut Res Int; 2020 Feb; 27(4):3803-3818. PubMed ID: 31838699 [TBL] [Abstract][Full Text] [Related]
18. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime. Yu W; Yang J; Shi Y; Song J; Shi Y; Xiao J; Li C; Xu X; He S; Liang S; Wu X; Hu J Water Res; 2016 May; 95():124-33. PubMed ID: 26986501 [TBL] [Abstract][Full Text] [Related]
19. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. Methneni N; Morales-González JA; Jaziri A; Mansour HB; Fernandez-Serrano M Environ Res; 2021 May; 196():110956. PubMed ID: 33675797 [TBL] [Abstract][Full Text] [Related]
20. Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna. Na J; Yoo J; Nam G; Jung J Environ Sci Process Impacts; 2017 Sep; 19(9):1169-1175. PubMed ID: 28703816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]