These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 34492833)
1. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. Huang H; Chen Y; Chen Z; Chen J; Hu Y; Zhu JJ J Hazard Mater; 2021 Aug; 416():125895. PubMed ID: 34492833 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled Ti Huang R; Chen S; Yu J; Jiang X Ecotoxicol Environ Saf; 2019 Nov; 184():109619. PubMed ID: 31493586 [TBL] [Abstract][Full Text] [Related]
3. Sn-MOF@CNT nanocomposite: An efficient electrochemical sensor for detection of hydrogen peroxide. Rani S; Sharma B; Malhotra R; Kumar S; Varma RS; Dilbaghi N Environ Res; 2020 Dec; 191():110005. PubMed ID: 32926892 [TBL] [Abstract][Full Text] [Related]
4. A Cu-functionalized MOF and multi-walled carbon nanotube composite modified electrode for the simultaneous determination of hydroquinone and catechol. Zhang HJ; Zou X; Chen WY; Sun Q; Gao EQ Anal Methods; 2022 Oct; 14(40):3961-3969. PubMed ID: 36173377 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous Electrochemical Detection of Catechol and Hydroquinone Based on a Carbon Nanotube Paste Electrode Modified with Electro-Reduced Graphene Oxide. Chen T; Liu C; Liu X; Zhu C; Zheng D Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337317 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Zhao DM; Zhang XH; Feng LJ; Jia L; Wang SF Colloids Surf B Biointerfaces; 2009 Nov; 74(1):317-21. PubMed ID: 19733467 [TBL] [Abstract][Full Text] [Related]
7. A sensor based on the carbon nanotubes-ionic liquid composite for simultaneous determination of hydroquinone and catechol. Bu C; Liu X; Zhang Y; Li L; Zhou X; Lu X Colloids Surf B Biointerfaces; 2011 Nov; 88(1):292-6. PubMed ID: 21802910 [TBL] [Abstract][Full Text] [Related]
8. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Zhou J; Li X; Yang L; Yan S; Wang M; Cheng D; Chen Q; Dong Y; Liu P; Cai W; Zhang C Anal Chim Acta; 2015 Oct; 899():57-65. PubMed ID: 26547493 [TBL] [Abstract][Full Text] [Related]
9. Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters. Ganesan S; Sivam S; Elancheziyan M; Senthilkumar S; Ramakrishan SG; Soundappan T; Ponnusamy VK Environ Pollut; 2022 Jan; 293():118556. PubMed ID: 34813885 [TBL] [Abstract][Full Text] [Related]
10. Metal-organic frameworks (MOFs) composite of polyaniline-CNT@aluminum succinate for non-enzymatic nitrite sensor. Alsafrani AE; Adeosun WA; Alruwais RS; Marwani HM; Asiri AM; Khan A Environ Sci Pollut Res Int; 2023 Jun; 30(27):71322-71339. PubMed ID: 37160857 [TBL] [Abstract][Full Text] [Related]
11. Engineering MOFs derived metal oxide nanohybrids: Towards electrochemical sensing of catechol in tea samples. Iftikhar T; Aziz A; Ashraf G; Xu Y; Li G; Zhang T; Asif M; Xiao F; Liu H Food Chem; 2022 Nov; 395():133642. PubMed ID: 35820273 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Graphene Oxide-Coupled CoNi Bimetallic MOF Nanocomposites for the Simultaneous Analysis of Catechol and Hydroquinone. Zheng S; Zhang N; Li L; Liu T; Zhang Y; Tang J; Guo J; Su S Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571740 [TBL] [Abstract][Full Text] [Related]
13. Discrimination and simultaneous determination of hydroquinone and catechol by tunable polymerization of imidazolium-based ionic liquid on multi-walled carbon nanotube surfaces. Feng X; Gao W; Zhou S; Shi H; Huang H; Song W Anal Chim Acta; 2013 Dec; 805():36-44. PubMed ID: 24296141 [TBL] [Abstract][Full Text] [Related]
15. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Goulart LA; Gonçalves R; Correa AA; Pereira EC; Mascaro LH Mikrochim Acta; 2017 Dec; 185(1):12. PubMed ID: 29594601 [TBL] [Abstract][Full Text] [Related]
16. A UiO-66-NH Li Y; Shen Y; Zhang Y; Zeng T; Wan Q; Lai G; Yang N Anal Chim Acta; 2021 May; 1158():338419. PubMed ID: 33863410 [TBL] [Abstract][Full Text] [Related]
17. [Simultaneous Determination of Hydroquinone and Catechol Based on L-Histidine-Erythrosine Composite Film Modified Glassy Carbon Electrode]. He JH; Xu Q; Ding WQ; Li Q Huan Jing Ke Xue; 2015 Apr; 36(4):1365-73. PubMed ID: 26164913 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Lu D; Zhang Y; Lin S; Wang L; Wang C Talanta; 2013 Aug; 112():111-6. PubMed ID: 23708545 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical sensor based on PEDOT/CNTs-graphene oxide for simultaneous determination of hazardous hydroquinone, catechol, and nitrite in real water samples. Ahmed YM; Eldin MA; Galal A; Atta NF Sci Rep; 2024 Mar; 14(1):5654. PubMed ID: 38454022 [TBL] [Abstract][Full Text] [Related]
20. Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Hu F; Chen S; Wang C; Yuan R; Yuan D; Wang C Anal Chim Acta; 2012 Apr; 724():40-6. PubMed ID: 22483207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]