These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34492844)
21. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Praetorius A; Labille J; Scheringer M; Thill A; Hungerbühler K; Bottero JY Environ Sci Technol; 2014 Sep; 48(18):10690-8. PubMed ID: 25127331 [TBL] [Abstract][Full Text] [Related]
22. Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media. Yang J; Ge M; Jin Q; Chen Z; Guo Z Chemosphere; 2019 Sep; 231():405-414. PubMed ID: 31146132 [TBL] [Abstract][Full Text] [Related]
23. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations. Yang XN; Cui FY Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417 [TBL] [Abstract][Full Text] [Related]
24. Effect of reduced inherent organic matter on stability and transport behaviors of black soil colloids. Pan Y; Chen C; Shang J Chemosphere; 2023 Sep; 336():139149. PubMed ID: 37307927 [TBL] [Abstract][Full Text] [Related]
25. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles. Lee J; Bartelt-Hunt SL; Li Y; Morton M Sci Total Environ; 2015 Apr; 511():195-202. PubMed ID: 25544338 [TBL] [Abstract][Full Text] [Related]
26. Impact of manure-related DOM on sulfonamide transport in arable soils. Zhou D; Thiele-Bruhn S; Arenz-Leufen MG; Jacques D; Lichtner P; Engelhardt I J Contam Hydrol; 2016 Sep; 192():118-128. PubMed ID: 27450276 [TBL] [Abstract][Full Text] [Related]
27. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media. Yang W; Wang Y; Shang J; Liu K; Sharma P; Liu J; Li B Chemosphere; 2017 Dec; 189():556-564. PubMed ID: 28963973 [TBL] [Abstract][Full Text] [Related]
28. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO Wang D; Wang P; Wang C; Ao Y Environ Pollut; 2019 May; 248():834-844. PubMed ID: 30856499 [TBL] [Abstract][Full Text] [Related]
29. Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids. Zhao T; Fang M; Tang Z; Zhao X; Wu F; Giesy JP Sci Total Environ; 2019 Nov; 692():660-668. PubMed ID: 31539974 [TBL] [Abstract][Full Text] [Related]
30. Copper distribution in water-dispersible colloids of swine manure and its transport through quartz sand. Bao Q; Lin Q; Tian G; Wang G; Yu J; Peng G J Hazard Mater; 2011 Feb; 186(2-3):1660-6. PubMed ID: 21251753 [TBL] [Abstract][Full Text] [Related]
31. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH. Wang P; Qi N; Ao Y; Hou J; Wang C; Qian J Environ Pollut; 2016 May; 212():178-187. PubMed ID: 26845365 [TBL] [Abstract][Full Text] [Related]
32. Influence of agricultural organic inputs and their aging on the transport of ferrihydrite nanoparticles: From enhancement to inhibition. Qian X; Ma J; Weng L; Chen Y; Ren Z; Li Y Sci Total Environ; 2020 Jun; 719():137440. PubMed ID: 32135331 [TBL] [Abstract][Full Text] [Related]
33. Cotransport of human adenoviruses with clay colloids and TiO Syngouna VI; Chrysikopoulos CV; Kokkinos P; Tselepi MA; Vantarakis A Sci Total Environ; 2017 Nov; 598():160-167. PubMed ID: 28441594 [TBL] [Abstract][Full Text] [Related]
34. Natural colloids facilitated transport of steroidal estrogens in saturated porous media: Mechanism and processes. Wang Y; Zhong L; Song X; Adeel M; Yang Y Environ Pollut; 2022 Dec; 315():120315. PubMed ID: 36216178 [TBL] [Abstract][Full Text] [Related]
35. Characterisation of the organic matter pool in manures. Moral R; Moreno-Caselles J; Perez-Murcia MD; Perez-Espinosa A; Rufete B; Paredes C Bioresour Technol; 2005 Jan; 96(2):153-8. PubMed ID: 15381211 [TBL] [Abstract][Full Text] [Related]
36. Effect of seepage velocity on the attachment efficiency of TiO2 nanoparticles in porous media. Kim C; Lee S J Hazard Mater; 2014 Aug; 279():163-8. PubMed ID: 25063929 [TBL] [Abstract][Full Text] [Related]
37. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Philippe A; Schaumann GE Environ Sci Technol; 2014 Aug; 48(16):8946-62. PubMed ID: 25082801 [TBL] [Abstract][Full Text] [Related]
38. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Stankus DP; Lohse SE; Hutchison JE; Nason JA Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562 [TBL] [Abstract][Full Text] [Related]
39. Effects of humic acids on the aggregation and sorption of nano-TiO2. Li Y; Yang C; Guo X; Dang Z; Li X; Zhang Q Chemosphere; 2015 Jan; 119():171-176. PubMed ID: 24992218 [TBL] [Abstract][Full Text] [Related]
40. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate. Wan B; Yan Y; Liu F; Tan W; He J; Feng X Sci Total Environ; 2016 Feb; 544():134-42. PubMed ID: 26657256 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]