BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34492884)

  • 1. Understanding the sorption behaviors of heavy metal ions in the interlayer and nanopore of montmorillonite: A molecular dynamics study.
    Liu L; Zhang C; Jiang W; Li X; Dai Y; Jia H
    J Hazard Mater; 2021 Aug; 416():125976. PubMed ID: 34492884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite.
    Zhu Z; Gao C; Wu Y; Sun L; Huang X; Ran W; Shen Q
    Bioresour Technol; 2013 Nov; 147():378-386. PubMed ID: 23999267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adsorption behavior of multiple contaminants like heavy metal ions and p-nitrophenol on organic-modified montmorillonite.
    Liu Y; Luan J; Zhang C; Ke X; Zhang H
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10387-10397. PubMed ID: 30762184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional wastepaper-montmorillonite composite aerogel for Cd
    Chen Y; Liu Y; Li Y; Zhao L; Chen Y; Li H; Liu Y; Li L; Xu F; Li M
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38644-38653. PubMed ID: 32623678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores.
    Yang G; Neretnieks I; Holmboe M
    J Chem Phys; 2017 Aug; 147(8):084705. PubMed ID: 28863548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electroactive montmorillonite/polypyrrole ion exchange film: Ultrahigh uptake capacity and ion selectivity for rapid removal of lead ions.
    Rong Y; Yan W; Wang Z; Hao X; Guan G
    J Hazard Mater; 2022 Sep; 437():129366. PubMed ID: 35728313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of alcohols on the retention mechanisms of Cd and Zn on Wyoming bentonite and illite.
    Srour RK; Mcdonald LM
    Environ Sci Technol; 2005 Sep; 39(18):7111-7. PubMed ID: 16201636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient extraction of lead ions from smelting wastewater, slag and contaminated soil by two-dimensional montmorillonite-based surface ion imprinted polymer absorbent.
    Zhu C; Hu T; Tang L; Zeng G; Deng Y; Lu Y; Fang S; Wang J; Liu Y; Yu J
    Chemosphere; 2018 Oct; 209():246-257. PubMed ID: 29933161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Cu (II)-bearing montmorillonite on Cd adsorption.
    Yu DY; Song WH; Zhou B; Li WF
    Biol Trace Elem Res; 2009 Aug; 130(2):185-92. PubMed ID: 19194669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of cadmium adsorption by EPS-montmorillonite composites.
    Yan S; Cai Y; Li H; Song S; Xia L
    Environ Pollut; 2019 Sep; 252(Pt B):1509-1518. PubMed ID: 31272010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of carboxymethyl chitosan hybrid montmorillonite and adsorption of Pb(II) and Congo red by CMC-MMT organic-inorganic hybrid composite.
    Zhang H; Ma J; Wang F; Chu Y; Yang L; Xia M
    Int J Biol Macromol; 2020 Apr; 149():1161-1169. PubMed ID: 31978471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexation of lead and cadmium ions with humic acids from arctic peat soils.
    Lodygin ED; Alekseev II; Vasilevich RS; Abakumov EV
    Environ Res; 2020 Dec; 191():110058. PubMed ID: 32798528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight sorption of arsenic, cadmium, mercury, and lead by edible activated carbon and acid-processed montmorillonite clay.
    Wang M; Bera G; Mitra K; Wade TL; Knap AH; Phillips TD
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6758-6770. PubMed ID: 33009611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite.
    Du H; Chen W; Cai P; Rong X; Feng X; Huang Q
    Environ Pollut; 2016 Nov; 218():168-175. PubMed ID: 27566847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of cobalt(II) ion from aqueous solution by chitosan-montmorillonite.
    Wang H; Tang H; Liu Z; Zhang X; Hao Z; Liu Z
    J Environ Sci (China); 2014 Sep; 26(9):1879-84. PubMed ID: 25193838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite.
    Wu P; Wu W; Li S; Xing N; Zhu N; Li P; Wu J; Yang C; Dang Z
    J Hazard Mater; 2009 Sep; 169(1-3):824-30. PubMed ID: 19443105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites.
    Oyanedel-Craver VA; Smith JA
    J Hazard Mater; 2006 Sep; 137(2):1102-14. PubMed ID: 16647204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of TCDD adsorption on organo-montmorillonite.
    Zhu R; Hu W; You Z; Ge F; Tian K
    J Colloid Interface Sci; 2012 Jul; 377(1):328-33. PubMed ID: 22487236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.