These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 34492984)
21. The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence. Tolaymat T; Genaidy A; Abdelraheem W; Dionysiou D; Andersen C Sci Total Environ; 2017 Feb; 579():93-106. PubMed ID: 27871749 [TBL] [Abstract][Full Text] [Related]
22. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Sharifan H; Moore J; Ma X Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627 [TBL] [Abstract][Full Text] [Related]
23. Phytotoxicity of nanoparticles--problems with bioassay choosing and sample preparation. Jośko I; Oleszczuk P Environ Sci Pollut Res Int; 2014 Sep; 21(17):10215-24. PubMed ID: 24756677 [TBL] [Abstract][Full Text] [Related]
24. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Singh D; Kumar A Environ Monit Assess; 2019 Oct; 191(11):703. PubMed ID: 31673860 [TBL] [Abstract][Full Text] [Related]
25. Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Lwalaba JLW; Louis LT; Zvobgo G; Richmond MEA; Fu L; Naz S; Mwamba M; Mundende RPM; Zhang G Ecotoxicol Environ Saf; 2020 Jan; 187():109866. PubMed ID: 31677568 [TBL] [Abstract][Full Text] [Related]
26. Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Burachevskaya M; Minkina T; Mandzhieva S; Bauer T; Nevidomskaya D; Shuvaeva V; Sushkova S; Kizilkaya R; Gülser C; Rajput V Environ Geochem Health; 2021 Apr; 43(4):1655-1672. PubMed ID: 33611695 [TBL] [Abstract][Full Text] [Related]
27. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
28. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Ge Y; Schimel JP; Holden PA Environ Sci Technol; 2011 Feb; 45(4):1659-64. PubMed ID: 21207975 [TBL] [Abstract][Full Text] [Related]
29. Freeze-thaw cycles promote vertical migration of metal oxide nanoparticles in soils. Xu G; Zheng Q; Yang X; Yu R; Yu Y Sci Total Environ; 2021 Nov; 795():148894. PubMed ID: 34252772 [TBL] [Abstract][Full Text] [Related]
30. CuO, ZnO, and γ-Fe Wei X; Cao P; Wang G; Liu Y; Song J; Han J Ecotoxicol Environ Saf; 2021 Jul; 217():112232. PubMed ID: 33864980 [TBL] [Abstract][Full Text] [Related]
31. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Kasemets K; Ivask A; Dubourguier HC; Kahru A Toxicol In Vitro; 2009 Sep; 23(6):1116-22. PubMed ID: 19486936 [TBL] [Abstract][Full Text] [Related]
32. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. Van Koetsem F; Van Havere L; Du Laing G J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651 [TBL] [Abstract][Full Text] [Related]
33. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Wang X; Sun W; Ma X Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135 [TBL] [Abstract][Full Text] [Related]
34. Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Liu Y; Li Y; Pan B; Zhang X; Zhang H; Steinberg CEW; Qiu H; Vijver MG; Peijnenburg WJGM Sci Total Environ; 2021 Feb; 757():143807. PubMed ID: 33288254 [TBL] [Abstract][Full Text] [Related]
35. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Yang X; Liu J; McGrouther K; Huang H; Lu K; Guo X; He L; Lin X; Che L; Ye Z; Wang H Environ Sci Pollut Res Int; 2016 Jan; 23(2):974-84. PubMed ID: 25772863 [TBL] [Abstract][Full Text] [Related]
36. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. Frenk S; Ben-Moshe T; Dror I; Berkowitz B; Minz D PLoS One; 2013; 8(12):e84441. PubMed ID: 24349575 [TBL] [Abstract][Full Text] [Related]
37. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. Tiong J; McDonald GK; Genc Y; Pedas P; Hayes JE; Toubia J; Langridge P; Huang CY New Phytol; 2014 Jan; 201(1):131-143. PubMed ID: 24033183 [TBL] [Abstract][Full Text] [Related]
38. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Cuillel M; Chevallet M; Charbonnier P; Fauquant C; Pignot-Paintrand I; Arnaud J; Cassio D; Michaud-Soret I; Mintz E Nanoscale; 2014; 6(3):1707-15. PubMed ID: 24343273 [TBL] [Abstract][Full Text] [Related]
39. The life cycle study revealed distinct impact of foliar-applied nano-Cu on antioxidant traits of barley grain comparing with conventional agents. Jośko I; Kusiak M; Różyło K; Baranowska-Wójcik E; Sierocka M; Sheteiwy M; Szwajgier D; Świeca M Food Res Int; 2023 Feb; 164():112303. PubMed ID: 36737907 [TBL] [Abstract][Full Text] [Related]
40. Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Stewart J; Hansen T; McLean JE; McManus P; Das S; Britt DW; Anderson AJ; Dimkpa CO Environ Toxicol Chem; 2015 Sep; 34(9):2116-25. PubMed ID: 25917258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]