These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34493089)

  • 1. Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge.
    Fernandes MC; Saadat M; Cauchy-Dubois P; Inamura C; Sirota T; Milliron G; Haj-Hariri H; Bertoldi K; Weaver JC
    J R Soc Interface; 2021 Sep; 18(182):20210559. PubMed ID: 34493089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lightweight lattice-based skeleton of the sponge Euplectella aspergillum: On the multifunctional design.
    Chen H; Jia Z; Li L
    J Mech Behav Biomed Mater; 2022 Nov; 135():105448. PubMed ID: 36166939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapting to the Abyss: Passive Ventilation in the Deep-Sea Glass Sponge Euplectella aspergillum.
    Falcucci G; Amati G; Bella G; Facci AL; Krastev VK; Polverino G; Succi S; Porfiri M
    Phys Rev Lett; 2024 May; 132(20):208402. PubMed ID: 38829072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a lattice structure inspired by glass sponge.
    Li QW; Sun BH
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36322985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges.
    Falcucci G; Amati G; Fanelli P; Krastev VK; Polverino G; Porfiri M; Succi S
    Nature; 2021 Jul; 595(7868):537-541. PubMed ID: 34290424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically robust lattices inspired by deep-sea glass sponges.
    Fernandes MC; Aizenberg J; Weaver JC; Bertoldi K
    Nat Mater; 2021 Feb; 20(2):237-241. PubMed ID: 32958878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum.
    Weaver JC; Aizenberg J; Fantner GE; Kisailus D; Woesz A; Allen P; Fields K; Porter MJ; Zok FW; Hansma PK; Fratzl P; Morse DE
    J Struct Biol; 2007 Apr; 158(1):93-106. PubMed ID: 17175169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures.
    Robson Brown K; Bacheva D; Trask RS
    J R Soc Interface; 2019 May; 16(154):20180965. PubMed ID: 31064257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
    Monn MA; Kesari H
    J Mech Behav Biomed Mater; 2017 Dec; 76():69-75. PubMed ID: 28595803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale.
    Aizenberg J; Weaver JC; Thanawala MS; Sundar VC; Morse DE; Fratzl P
    Science; 2005 Jul; 309(5732):275-8. PubMed ID: 16002612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of von Kármán Vortex Street in an Atomic Superfluid Gas.
    Kwon WJ; Kim JH; Seo SW; Shin Y
    Phys Rev Lett; 2016 Dec; 117(24):245301. PubMed ID: 28009203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ investigations of failure mechanisms of silica fibers from the venus flower basket (Euplectella Aspergillum).
    Morankar SK; Mistry Y; Bhate D; Penick CA; Chawla N
    Acta Biomater; 2023 May; 162():304-311. PubMed ID: 36963595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning hydrodynamic signatures through proprioceptive sensing by bioinspired swimmers.
    Pollard B; Tallapragada P
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33271521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum.
    Monn MA; Weaver JC; Zhang T; Aizenberg J; Kesari H
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4976-81. PubMed ID: 25848003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.
    Kazakidi A; Vavourakis V; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1321-39. PubMed ID: 24730546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of vortex shedding mechanism for staggered rows of cylinders.
    Nazeer G; Islam SU; Shigri SH
    Heliyon; 2019 Feb; 5(2):e01224. PubMed ID: 30828659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2014 Apr; 47(6):1401-8. PubMed ID: 24524992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial lateral line based local sensing between two adjacent robotic fish.
    Zheng X; Wang C; Fan R; Xie G
    Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.