These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34493089)

  • 61. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Numerical Analysis and 1D/2D Sensitivity Study for Monolithic and Laminated Structural Glass Elements under Thermal Exposure.
    Kozłowski M; Bedon C; Honfi D
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30115824
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Investigating the Interaction Between Circulating Tumor Cells and Local Hydrodynamics
    Pepona M; Balogh P; Puleri DF; Hynes WF; Robertson C; Dubbin K; Alvarado J; Moya ML; Randles A
    Cell Mol Bioeng; 2020 Oct; 13(5):527-540. PubMed ID: 33184581
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhancing the Vortex Whistle for Measures of Respiratory Capacity Via Computational Fluid Dynamics and Computational Aero-Acoustic Analysis.
    Li A; Awan JA; Chen J; Eddins D; Awan SN
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35579176
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Refuging rainbow trout selectively exploit flows behind tandem cylinders.
    Stewart WJ; Tian FB; Akanyeti O; Walker CJ; Liao JC
    J Exp Biol; 2016 Jul; 219(Pt 14):2182-91. PubMed ID: 27445401
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hydrodynamic cavitation through a bio-inspired fast-closing plunger mechanism: experiments and simulations.
    Godínez FA; Guzmán JEV; Salinas-Vázquez M; Valdés R; Palacios C; Chávez O
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35447617
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydrodynamics of Vortex Generation during Bell Contraction by the Hydromedusa
    Costello JH; Colin SP; Gemmell BJ; Dabiri JO
    Biomimetics (Basel); 2019 Jul; 4(3):. PubMed ID: 31284395
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bénard-von Kármán vortex street in a Bose-Einstein condensate.
    Sasaki K; Suzuki N; Saito H
    Phys Rev Lett; 2010 Apr; 104(15):150404. PubMed ID: 20481976
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Medullary lateral line units of rudd, Scardinius erythrophthalmus, are sensitive to Kármán vortex streets.
    Klein A; Winkelnkemper J; Dylda E; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):691-703. PubMed ID: 26018072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanical Characterisation and Analysis of a Passive Micro Heat Exchanger.
    Granados-Ortiz FJ; Ortega-Casanova J
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32660001
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence for Vortex Shedding in the Sun's Hot Corona.
    Samanta T; Tian H; Nakariakov VM
    Phys Rev Lett; 2019 Jul; 123(3):035102. PubMed ID: 31386484
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Response of the copepod
    Elmi D; Webster DR; Fields DM
    J Exp Biol; 2021 Feb; 224(Pt 3):. PubMed ID: 33443042
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Propulsion efficiency and imposed flow fields of a copepod jump.
    Jiang H; Kiørboe T
    J Exp Biol; 2011 Feb; 214(Pt 3):476-86. PubMed ID: 21228207
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Liposome destruction by hydrodynamic cavitation in comparison to chemical, physical and mechanical treatments.
    Pandur Ž; Dogsa I; Dular M; Stopar D
    Ultrason Sonochem; 2020 Mar; 61():104826. PubMed ID: 31670247
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrodynamics of sponge pumps and evolution of the sponge body plan.
    Asadzadeh SS; Kiørboe T; Larsen PS; Leys SP; Yahel G; Walther JH
    Elife; 2020 Nov; 9():. PubMed ID: 33252039
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An ultraslow-spreading class of ocean ridge.
    Dick HJ; Lin J; Schouten H
    Nature; 2003 Nov; 426(6965):405-12. PubMed ID: 14647373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.