These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 34493098)
1. A meta-analysis about the accumulation of heavy metals uptake by Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098 [No Abstract] [Full Text] [Related]
2. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance]. Yao GH; Xu HZ; Zhu LG; Ma JW; Liu D; Ye ZQ Huan Jing Ke Xue; 2015 Nov; 36(11):4268-76. PubMed ID: 26911018 [TBL] [Abstract][Full Text] [Related]
3. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. Chen Z; Liu Q; Chen S; Zhang S; Wang M; Mujtaba Munir MA; Feng Y; He Z; Yang X Environ Pollut; 2022 Jan; 293():118510. PubMed ID: 34793909 [TBL] [Abstract][Full Text] [Related]
4. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
5. Cadmium uptake and transfer by Xue Z; Wu M; Hu H; Kianpoor Kalkhajeh Y Int J Phytoremediation; 2021; 23(10):1052-1060. PubMed ID: 33491471 [No Abstract] [Full Text] [Related]
6. Dispose waste liquor of fresh biomass of a hyperaccumulator Hu P; Du Y; Yang Y; Li Z; Luo Y; Wu L Int J Phytoremediation; 2022; 24(1):1-11. PubMed ID: 34004122 [No Abstract] [Full Text] [Related]
7. Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. Chen Z; Liu Q; Zhang S; Hamid Y; Lian J; Huang X; Zou T; Lin Q; Feng Y; He Z; Yang X Sci Total Environ; 2024 Feb; 913():169788. PubMed ID: 38181951 [TBL] [Abstract][Full Text] [Related]
8. [Strengthening the effect of Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Zou J; Song F; Lu Y; Zhuge Y; Niu Y; Lou Y; Pan H; Zhang P; Pang L Chemosphere; 2021 Aug; 276():130223. PubMed ID: 34088099 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola. Liu W; Wang B; Wang Q; Hou J; Wu L; Wood JL; Luo Y; Franks AE Environ Sci Pollut Res Int; 2016 Sep; 23(18):18621-9. PubMed ID: 27306207 [TBL] [Abstract][Full Text] [Related]
11. Effects of four endophytic bacteria on cadmium speciation and remediation efficiency of Sedum plumbizincicola in farmland soil. Cheng X; Cao X; Tan C; Liu L; Bai J; Liang Y; Cai R Environ Sci Pollut Res Int; 2022 Dec; 29(59):89557-89569. PubMed ID: 35852747 [TBL] [Abstract][Full Text] [Related]
12. A Cd/Zn Co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance. Xv L; Ge J; Tian S; Wang H; Yu H; Zhao J; Lu L Environ Pollut; 2020 Aug; 263(Pt B):114401. PubMed ID: 32234645 [TBL] [Abstract][Full Text] [Related]
13. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. Ge J; Tao J; Zhao J; Wu Z; Zhang H; Gao Y; Tian S; Xie R; Xu S; Lu L Ecotoxicol Environ Saf; 2022 Aug; 241():113795. PubMed ID: 35753274 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Liu H; Zhao H; Wu L; Liu A; Zhao FJ; Xu W New Phytol; 2017 Jul; 215(2):687-698. PubMed ID: 28574163 [TBL] [Abstract][Full Text] [Related]
16. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil. Bian F; Zhong Z; Wu S; Zhang X; Yang C; Xiong X Int J Phytoremediation; 2018 Apr; 20(5):490-498. PubMed ID: 28949764 [TBL] [Abstract][Full Text] [Related]
17. Implication of exogenous abscisic acid (ABA) application on phytoremediation: plants grown in co-contaminated soil. Cheng L; Pu L; Li A; Zhu X; Zhao P; Xu X; Lei N; Chen J Environ Sci Pollut Res Int; 2022 Feb; 29(6):8684-8693. PubMed ID: 34491497 [TBL] [Abstract][Full Text] [Related]
18. Zinc uptake and replenishment mechanisms during repeated phytoextraction using Sedum plumbizincicola revealed by stable isotope fractionation. Zhou J; Li Z; Zhang X; Yu H; Wu L; Huang F; Luo Y; Christie P Sci Total Environ; 2022 Feb; 806(Pt 3):151306. PubMed ID: 34743872 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. Chen Z; Liu Q; Chen D; Wu Y; Hamid Y; Lin Q; Zhang S; Feng Y; He Z; Yin X; Yang X Sci Total Environ; 2024 Jul; 932():173029. PubMed ID: 38719039 [TBL] [Abstract][Full Text] [Related]
20. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types]. Zhao B; Shen LB; Cheng MM; Wang SF; Wu LH; Zhou SB; Luo YM Ying Yong Sheng Tai Xue Bao; 2011 Oct; 22(10):2725-31. PubMed ID: 22263481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]