These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34493371)

  • 1. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA.
    Albaradei S; Magana-Mora A; Thafar M; Uludag M; Bajic VB; Gojobori T; Essack M; Jankovic BR
    Gene; 2020 Dec; 763S():100035. PubMed ID: 34493371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA.
    Albaradei S; Magana-Mora A; Thafar M; Uludag M; Bajic VB; Gojobori T; Essack M; Jankovic BR
    Gene X; 2020 Dec; 5():100035. PubMed ID: 32550561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks.
    Liu X; Zhang H; Zeng Y; Zhu X; Zhu L; Fu J
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EnsembleSplice: ensemble deep learning model for splice site prediction.
    Akpokiro V; Martin T; Oluwadare O
    BMC Bioinformatics; 2022 Oct; 23(1):413. PubMed ID: 36203144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Splicer: A CNN Model for Splice Site Prediction in Genetic Sequences.
    Fernandez-Castillo E; Barbosa-Santillán LI; Falcon-Morales L; Sánchez-Escobar JJ
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An effective deep learning-based approach for splice site identification in gene expression.
    Ali M; Shah D; Qazi S; Khan IA; Abrar M; Zahir S
    Sci Prog; 2024; 107(3):368504241266588. PubMed ID: 39051530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splice site prediction with quadratic discriminant analysis using diversity measure.
    Zhang L; Luo L
    Nucleic Acids Res; 2003 Nov; 31(21):6214-20. PubMed ID: 14576308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Splice-Site Prediction with Deep Neural Networks.
    Naito T
    J Comput Biol; 2018 Aug; 25(8):954-961. PubMed ID: 29668310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDeepSSP: Explainable deep neural networks for exact splice sites prediction.
    Amilpur S; Bhukya R
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050024. PubMed ID: 32696716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted action of the new Genomic Peptide Finder and AUGUSTUS allows for automated proteogenomic annotation of the Chlamydomonas reinhardtii genome.
    Specht M; Stanke M; Terashima M; Naumann-Busch B; Janssen I; Höhner R; Hom EF; Liang C; Hippler M
    Proteomics; 2011 May; 11(9):1814-23. PubMed ID: 21432999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate splice site prediction using support vector machines.
    Sonnenburg S; Schweikert G; Philips P; Behr J; Rätsch G
    BMC Bioinformatics; 2007; 8 Suppl 10(Suppl 10):S7. PubMed ID: 18269701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SpliceMachine: predicting splice sites from high-dimensional local context representations.
    Degroeve S; Saeys Y; De Baets B; Rouzé P; Van de Peer Y
    Bioinformatics; 2005 Apr; 21(8):1332-8. PubMed ID: 15564294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNNSplice: Robust models for splice site prediction using convolutional neural networks.
    Akpokiro V; Chowdhury HMAM; Olowofila S; Nusrat R; Oluwadare O
    Comput Struct Biotechnol J; 2023; 21():3210-3223. PubMed ID: 37304005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio gene finding in Drosophila genomic DNA.
    Salamov AA; Solovyev VV
    Genome Res; 2000 Apr; 10(4):516-22. PubMed ID: 10779491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the effect of variants on splicing using Convolutional Neural Networks.
    Thanapattheerakul T; Engchuan W; Chan JH
    PeerJ; 2020; 8():e9470. PubMed ID: 32704450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DASSI: differential architecture search for splice identification from DNA sequences.
    Moosa S; Amira PA; Boughorbel DS
    BioData Min; 2021 Feb; 14(1):15. PubMed ID: 33588916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.
    Levin L; Bar-Yaacov D; Bouskila A; Chorev M; Carmel L; Mishmar D
    PLoS One; 2015; 10(11):e0143329. PubMed ID: 26606265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.