BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 34493541)

  • 1. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.
    Dutra IC; Waller DA; Wessel JR
    J Neurosci; 2018 Feb; 38(6):1482-1492. PubMed ID: 29305533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paired-pulse TMS and scalp EEG reveal systematic relationship between inhibitory GABA
    Hynd M; Soh C; Rangel BO; Wessel JR
    J Neurophysiol; 2021 Feb; 125(2):648-660. PubMed ID: 33439759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pause-then-Cancel model of human action-stopping: Theoretical considerations and empirical evidence.
    Diesburg DA; Wessel JR
    Neurosci Biobehav Rev; 2021 Oct; 129():17-34. PubMed ID: 34293402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global pause generates nonselective response inhibition during selective stopping.
    Wadsley CG; Cirillo J; Nieuwenhuys A; Byblow WD
    Cereb Cortex; 2023 Aug; 33(17):9729-9740. PubMed ID: 37395336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Mechanism for Global and Selective Response Inhibition under the Influence of Motor Preparation.
    Raud L; Huster RJ; Ivry RB; Labruna L; Messel MS; Greenhouse I
    J Neurosci; 2020 Oct; 40(41):7921-7935. PubMed ID: 32928884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: a TMS study.
    van den Wildenberg WP; Burle B; Vidal F; van der Molen MW; Ridderinkhof KR; Hasbroucq T
    J Cogn Neurosci; 2010 Feb; 22(2):225-39. PubMed ID: 19400674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition.
    Waller DA; Hazeltine E; Wessel JR
    Int J Psychophysiol; 2021 May; 163():11-21. PubMed ID: 30659867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping.
    Wessel JR; Aron AR
    Neuroimage; 2014 Dec; 103():225-234. PubMed ID: 25270603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveling the Field for a Fairer Race between Going and Stopping: Neural Evidence for the Race Model of Motor Inhibition from a New Version of the Stop Signal Task.
    Dykstra T; Waller DA; Hazeltine E; Wessel JR
    J Cogn Neurosci; 2020 Apr; 32(4):590-602. PubMed ID: 31742470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common and unique neurophysiological signatures for the stopping and revising of actions reveal the temporal dynamics of inhibitory control.
    Hervault M; Wessel JR
    bioRxiv; 2024 Jun; ():. PubMed ID: 38948849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopping Speed in Response to Auditory and Visual Stop Signals Depends on Go Signal Modality.
    Weber S; Salomoni SE; St George RJ; Hinder MR
    J Cogn Neurosci; 2024 Jun; 36(7):1395-1411. PubMed ID: 38683725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Rise and Persistent Inhibition of Electromyography during Failed Stopping.
    Fisher M; Trinh H; O'Neill J; Greenhouse I
    J Cogn Neurosci; 2024 Jun; 36(7):1412-1426. PubMed ID: 38683729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hold your horses: Differences in EEG correlates of inhibition in cancelling and stopping an action.
    Hervault M; Zanone PG; Buisson JC; Huys R
    Neuropsychologia; 2022 Jul; 172():108255. PubMed ID: 35513065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of unpredictable Stop and non-Stop cues in overt and imagined execution.
    González-Villar A; Galdo-Álvarez S; Carrillo-de-la-Peña MT
    Psychophysiology; 2022 Jul; 59(7):e14019. PubMed ID: 35224733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional bias on motor control: is motor inhibition influenced by attentional reorienting?
    Hilt PM; Cardellicchio P
    Psychol Res; 2020 Mar; 84(2):276-284. PubMed ID: 29520490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associatively-Mediated Suppression of Corticospinal Excitability: A Transcranial Magnetic Stimulation (TMS) Study.
    Seet MS; Livesey EJ; Harris JA
    Neuroscience; 2019 Sep; 416():1-8. PubMed ID: 31356901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.