These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34493676)

  • 1. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals.
    Lu Y; Zhang YH; Ma E; Han WZ
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34493676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling factors for the brittle-to-ductile transition in tungsten single crystals.
    Gumbsch P; Riedle J; Hartmaier A; Fischmeister HF
    Science; 1998 Nov; 282(5392):1293-5. PubMed ID: 9812888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the dual role of grain boundaries as dislocation sources and obstacles and its impact on toughness and brittle-to-ductile transition.
    Reiser J; Hartmaier A
    Sci Rep; 2020 Feb; 10(1):2739. PubMed ID: 32066807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal.
    Lu Y; Chen Y; Zeng Y; Zhang Y; Kong D; Li X; Zhu T; Li X; Mao S; Zhang Z; Wang L; Han X
    Nat Commun; 2023 Sep; 14(1):5540. PubMed ID: 37684248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys.
    Tsuru T; Han S; Matsuura S; Chen Z; Kishida K; Iobzenko I; Rao SI; Woodward C; George EP; Inui H
    Nat Commun; 2024 Feb; 15(1):1706. PubMed ID: 38402252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys.
    Chen B; Li S; Zong H; Ding X; Sun J; Ma E
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16199-16206. PubMed ID: 32601202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium.
    Zhou L; Guo YF
    Materials (Basel); 2015 Aug; 8(8):5250-5264. PubMed ID: 28793502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires.
    Cheng G; Zhang Y; Chang TH; Liu Q; Chen L; Lu WD; Zhu T; Zhu Y
    Nano Lett; 2019 Aug; 19(8):5327-5334. PubMed ID: 31314538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Nov; 4():6981. PubMed ID: 25382029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain Rate Effect on the Ductile Brittle Transition in Grinding Hot Pressed SiC Ceramics.
    Huang P; Zhang J
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ductile-to-Brittle Transition and Brittle Fracture Stress of Ultrafine-Grained Low-Carbon Steel.
    Inoue T; Qiu H; Ueji R; Kimura Y
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singular orientations and faceted motion of dislocations in body-centered cubic crystals.
    Kang K; Bulatov VV; Cai W
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15174-8. PubMed ID: 22949701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling defects and plasticity in MgSiO
    Goryaeva AM; Carrez P; Cordier P
    Phys Chem Miner; 2017; 44(7):521-533. PubMed ID: 32025082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order.
    Yin S; Zuo Y; Abu-Odeh A; Zheng H; Li XG; Ding J; Ong SP; Asta M; Ritchie RO
    Nat Commun; 2021 Aug; 12(1):4873. PubMed ID: 34381027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.
    Tao W; Cao P; Park HS
    Nano Lett; 2018 Feb; 18(2):1296-1304. PubMed ID: 29298076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of Temperature and Plastic Strain Effects into Local Approach to Fracture.
    Kotrechko S; Kozák V; Zatsarna O; Zimina G; Stetsenko N; Dlouhý I
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous dislocation multiplication in FCC metals.
    de Koning M; Cai W; Bulatov VV
    Phys Rev Lett; 2003 Jul; 91(2):025503. PubMed ID: 12906487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glide Mobility of a-Type Edge Dislocations in Aluminum Nitride by Molecular Dynamics Simulation.
    Zhao Y; Fu D; Wang Q; Huang J; Lei D; Ren Z; Wu L
    ACS Omega; 2022 Jan; 7(2):2015-2022. PubMed ID: 35071889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screw-Dislocation-Induced Strengthening-Toughening Mechanisms in Complex Layered Materials: The Case Study of Tobermorite.
    Zhang N; Carrez P; Shahsavari R
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1496-1506. PubMed ID: 28009497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.