BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34493759)

  • 1. Melanoma cells adopt features of both mesenchymal and amoeboid migration within confining channels.
    Gabbireddy SR; Vosatka KW; Chung AJ; Logue JS
    Sci Rep; 2021 Sep; 11(1):17804. PubMed ID: 34493759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells.
    Chikina AS; Rubtsova SN; Lomakina ME; Potashnikova DM; Vorobjev IA; Alexandrova AY
    Biol Cell; 2019 Oct; 111(10):245-261. PubMed ID: 31403697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.
    Liu YJ; Le Berre M; Lautenschlaeger F; Maiuri P; Callan-Jones A; Heuzé M; Takaki T; Voituriez R; Piel M
    Cell; 2015 Feb; 160(4):659-672. PubMed ID: 25679760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination.
    Cantelli G; Orgaz JL; Rodriguez-Hernandez I; Karagiannis P; Maiques O; Matias-Guiu X; Nestle FO; Marti RM; Karagiannis SN; Sanz-Moreno V
    Curr Biol; 2015 Nov; 25(22):2899-914. PubMed ID: 26526369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style.
    Margheri F; Luciani C; Taddei ML; Giannoni E; Laurenzana A; Biagioni A; Chillà A; Chiarugi P; Fibbi G; Del Rosso M
    Oncotarget; 2014 Mar; 5(6):1538-53. PubMed ID: 24681666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerin regulation of nuclear stiffness is required for fast amoeboid migration in confined environments.
    Lavenus SB; Vosatka KW; Caruso AP; Ullo MF; Khan A; Logue JS
    J Cell Sci; 2022 Apr; 135(8):. PubMed ID: 35362531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amoeboid migration of monocytes in confining channels requires the local remodeling of the cortical actin cytoskeleton by cofilin-1.
    Ullo MF; D'Amico AE; Lavenus SB; Logue JS
    Res Sq; 2023 Nov; ():. PubMed ID: 37961301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The amoeboid migration of monocytes in confining channels requires the local remodeling of the cortical actin cytoskeleton by cofilin-1.
    Ullo MF; D'Amico AE; Lavenus SB; Logue JS
    bioRxiv; 2024 Apr; ():. PubMed ID: 37609240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The amoeboid migration of monocytes in confining channels requires the local remodeling of the cortical actin cytoskeleton by cofilin-1.
    Ullo MF; D'Amico AE; Lavenus SB; Logue JS
    Sci Rep; 2024 May; 14(1):10241. PubMed ID: 38702365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane-cortex interactions.
    Yip AK; Chiam KH; Matsudaira P
    Integr Biol (Camb); 2015 Oct; 7(10):1196-211. PubMed ID: 26050549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical view on migration modes.
    Mierke CT
    Cell Adh Migr; 2015; 9(5):367-79. PubMed ID: 26192136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer Cells Invade Confined Microchannels via a Self-Directed Mesenchymal-to-Amoeboid Transition.
    Holle AW; Govindan Kutty Devi N; Clar K; Fan A; Saif T; Kemkemer R; Spatz JP
    Nano Lett; 2019 Apr; 19(4):2280-2290. PubMed ID: 30775927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly.
    Beckham Y; Vasquez RJ; Stricker J; Sayegh K; Campillo C; Gardel ML
    PLoS One; 2014; 9(6):e100943. PubMed ID: 24967897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells.
    Cooper S; Sadok A; Bousgouni V; Bakal C
    Mol Biol Cell; 2015 Nov; 26(22):4163-70. PubMed ID: 26310441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells.
    Alexandrova AY; Chikina AS; Svitkina TM
    Int Rev Cell Mol Biol; 2020; 356():197-256. PubMed ID: 33066874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis.
    Kawauchi T
    Int J Mol Sci; 2012; 13(4):4564-4590. PubMed ID: 22605996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution.
    Liu Y; Wang YJ; Du Y; Liu W; Huang X; Fan Z; Lu J; Yi R; Xiang XW; Xia X; Gu H; Liu YJ; Liu B
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2317492121. PubMed ID: 38547056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metastasis gene NEDD9 product acts through integrin β3 and Src to promote mesenchymal motility and inhibit amoeboid motility.
    Ahn J; Sanz-Moreno V; Marshall CJ
    J Cell Sci; 2012 Apr; 125(Pt 7):1814-26. PubMed ID: 22328516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ROCK1 and LIMK2 interact in spread but not blebbing cancer cells.
    Shea KF; Wells CM; Garner AP; Jones GE
    PLoS One; 2008; 3(10):e3398. PubMed ID: 18852895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKCα promotes the mesenchymal to amoeboid transition and increases cancer cell invasiveness.
    Vaškovičová K; Szabadosová E; Čermák V; Gandalovičová A; Kasalová L; Rösel D; Brábek J
    BMC Cancer; 2015 Apr; 15():326. PubMed ID: 25924946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.