These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34494652)

  • 1. Heating rates are more strongly influenced by near-infrared than visible reflectance in beetles.
    Wang LY; Franklin AM; Black JR; Stuart-Fox D
    J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34494652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretty Cool Beetles: Can Manipulation of Visible and Near-Infrared Sunlight Prevent Overheating?
    Ospina-Rozo L; Subbiah J; Seago A; Stuart-Fox D
    Integr Org Biol; 2022; 4(1):obac036. PubMed ID: 36110288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual reflectance of solar radiation confers a thermoregulatory benefit to dimorphic males bees (Centris pallida) using distinct microclimates.
    Barrett M; O'Donnell S
    PLoS One; 2023; 18(3):e0271250. PubMed ID: 36917573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus.
    Xie D; Yang Z; Liu X; Cui S; Zhou H; Fan T
    Soft Matter; 2019 May; 15(21):4294-4300. PubMed ID: 31095159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae).
    Amore V; Hernández MIM; Carrascal LM; Lobo JM
    PeerJ; 2017; 5():e3349. PubMed ID: 28533987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflection of near-infrared light confers thermal protection in birds.
    Medina I; Newton E; Kearney MR; Mulder RA; Porter WP; Stuart-Fox D
    Nat Commun; 2018 Sep; 9(1):3610. PubMed ID: 30190466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microstructure of white feathers predicts their visible and near-infrared reflectance properties.
    Stuart-Fox D; Newton E; Mulder RA; D'Alba L; Shawkey MD; Igic B
    PLoS One; 2018; 13(7):e0199129. PubMed ID: 29975724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to thermal extremes favors higher solar reflectivity in intertidal gastropods.
    Franklin AM; Rankin KJ; Hugall A; Stuart-Fox D
    iScience; 2022 Dec; 25(12):105674. PubMed ID: 36536676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate predicts both visible and near-infrared reflectance in butterflies.
    Kang C; Im S; Lee WY; Choi Y; Stuart-Fox D; Huertas B
    Ecol Lett; 2021 Sep; 24(9):1869-1879. PubMed ID: 34174001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible and near-infrared radiation may be transmitted or absorbed differently by beetle elytra according to habitat preference.
    Cuesta E; Lobo JM
    PeerJ; 2019; 7():e8104. PubMed ID: 31788360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal consequences of colour and near-infrared reflectance.
    Stuart-Fox D; Newton E; Clusella-Trullas S
    Philos Trans R Soc Lond B Biol Sci; 2017 Jul; 372(1724):. PubMed ID: 28533462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic structures improve radiative heat exchange of Rosalia alpina (Coleoptera: Cerambycidae).
    Pavlović D; Vasiljević D; Salatić B; Lazović V; Dikić G; Tomić L; Ćurčić S; Milovanović P; Todorović D; Pantelić DV
    J Therm Biol; 2018 Aug; 76():126-138. PubMed ID: 30143287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies.
    Munro JT; Medina I; Walker K; Moussalli A; Kearney MR; Dyer AG; Garcia J; Rankin KJ; Stuart-Fox D
    Proc Biol Sci; 2019 Mar; 286(1898):20190234. PubMed ID: 30862288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beetle Exoskeleton May Facilitate Body Heat Acting Differentially across the Electromagnetic Spectrum.
    Carrascal LM; Ruiz YJ; Lobo JM
    Physiol Biochem Zool; 2017; 90(3):338-347. PubMed ID: 28384421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal adjustment of solar heat gain independent of coat coloration in a desert mammal.
    Walsberg GE; Weaver T; Wolf BO
    Physiol Zool; 1997; 70(2):150-7. PubMed ID: 9231387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared optical and thermal properties of microstructures in butterfly wings.
    Krishna A; Nie X; Warren AD; Llorente-Bousquets JE; Briscoe AD; Lee J
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1566-1572. PubMed ID: 31919285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of ice and snow.
    Warren SG
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180161. PubMed ID: 30982450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling.
    Chen Y; Mandal J; Li W; Smith-Washington A; Tsai CC; Huang W; Shrestha S; Yu N; Han RPS; Cao A; Yang Y
    Sci Adv; 2020 Apr; 6(17):eaaz5413. PubMed ID: 32426464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on Passive Heating Involving Firewalls with an Additional Sunlight Room in Rural Residential Buildings.
    Yang S; Dewancker B; Chen S
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar Thermal Textiles for On-Body Radiative Energy Collection Inspired by Polar Animals.
    Viola W; Zhao P; Andrew TL
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19393-19402. PubMed ID: 37018749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.