These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 34494672)
1. Expanding the Chemical Space of Tetracyanobuta-1,3-diene (TCBD) through a Cyano-Diels-Alder Reaction: Synthesis, Structure, and Physicochemical Properties of an Anthryl-fused-TCBD Derivative. Mateo LM; Sagresti L; Luo Y; Guldi DM; Torres T; Brancato G; Bottari G Chemistry; 2021 Nov; 27(64):16049-16055. PubMed ID: 34494672 [TBL] [Abstract][Full Text] [Related]
2. Subphthalocyanines Axially Substituted with a Tetracyanobuta-1,3-diene-Aniline Moiety: Synthesis, Structure, and Physicochemical Properties. Winterfeld KA; Lavarda G; Guilleme J; Sekita M; Guldi DM; Torres T; Bottari G J Am Chem Soc; 2017 Apr; 139(15):5520-5529. PubMed ID: 28322560 [TBL] [Abstract][Full Text] [Related]
4. Intense Ground-State Charge-Transfer Interactions in Low-Bandgap, Panchromatic Phthalocyanine-Tetracyanobuta-1,3-diene Conjugates. Sekita M; Ballesteros B; Diederich F; Guldi DM; Bottari G; Torres T Angew Chem Int Ed Engl; 2016 Apr; 55(18):5560-4. PubMed ID: 27010677 [TBL] [Abstract][Full Text] [Related]
5. Excited-State Electron Transfer in 1,1,4,4-Tetracyanobuta-1,3-diene (TCBD)- and Cyclohexa-2,5-diene-1,4-diylidene-Expanded TCBD-Substituted BODIPY-Phenothiazine Donor-Acceptor Conjugates. Poddar M; Jang Y; Misra R; D'Souza F Chemistry; 2020 May; 26(30):6869-6878. PubMed ID: 32160356 [TBL] [Abstract][Full Text] [Related]
6. NIR-Absorbing Donor-Acceptor Based 1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-Diene-1,4-Ylidene-Expanded TCBD-Substituted Ferrocenyl Phenothiazines. Poddar M; Misra R Chem Asian J; 2017 Nov; 12(22):2908-2915. PubMed ID: 28901716 [TBL] [Abstract][Full Text] [Related]
7. NIR-Absorbing 1,1,4,4-Tetracyanobuta-1,3-diene- and Dicyanoquinodimethane-Functionalized Donor-Acceptor Phenothiazine Derivatives: Synthesis and Characterization. Gupta PK; Khan F; Misra R J Org Chem; 2023 Oct; 88(20):14308-14322. PubMed ID: 37820059 [TBL] [Abstract][Full Text] [Related]
8. Symmetric and Asymmetric Push-Pull Conjugates: Significance of Pull Group Strength on Charge Transfer and Separation. Jang Y; Rout Y; Misra R; D'Souza F J Phys Chem B; 2021 Apr; 125(16):4067-4075. PubMed ID: 33872029 [TBL] [Abstract][Full Text] [Related]
9. Charge-Transfer in Panchromatic Porphyrin-Tetracyanobuta-1,3-Diene-Donor Conjugates: Switching the Role of Porphyrin in the Charge Separation Process. Sekaran B; Dawson A; Jang Y; MohanSingh KV; Misra R; D'Souza F Chemistry; 2021 Oct; 27(57):14335-14344. PubMed ID: 34375474 [TBL] [Abstract][Full Text] [Related]
12. Triphenylamine/Tetracyanobutadiene-Based π-Conjugated Push-Pull Molecules End-Capped with Arene Platforms: Synthesis, Photophysics, and Photovoltaic Response. Simón Marqués P; Castán JMA; Raul BAL; Londi G; Ramirez I; Pshenichnikov MS; Beljonne D; Walzer K; Blais M; Allain M; Cabanetos C; Blanchard P Chemistry; 2020 Dec; 26(69):16422-16433. PubMed ID: 32701173 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and Optical Features of Axially and Peripherally Substituted Subporphyrins. A Paradigmatic Example of Charge Transfer versus Exciplex States. Winterfeld KA; Lavarda G; Yoshida K; Bayerlein MJ; Kise K; Tanaka T; Osuka A; Guldi DM; Torres T; Bottari G J Am Chem Soc; 2020 Apr; 142(17):7920-7929. PubMed ID: 32243157 [TBL] [Abstract][Full Text] [Related]
14. Tuning the electronic properties of nonplanar exTTF-based push-pull chromophores by aryl substitution. García R; Herranz MÁ; Torres MR; Bouit PA; Delgado JL; Calbo J; Viruela PM; Ortí E; Martín N J Org Chem; 2012 Dec; 77(23):10707-17. PubMed ID: 23130682 [TBL] [Abstract][Full Text] [Related]
15. The Role of Planarity versus Nonplanarity in the Electronic Communication of TCAQ-Based Push-Pull Chromophores. García R; Calbo J; Viruela R; Herranz MÁ; Ortí E; Martín N Chempluschem; 2018 Apr; 83(4):300-307. PubMed ID: 31957276 [TBL] [Abstract][Full Text] [Related]
16. Cyanobuta-1,3-dienes as novel electron acceptors for photoactive multicomponent systems. Tancini F; Monti F; Howes K; Belbakra A; Listorti A; Schweizer WB; Reutenauer P; Alonso-Gómez JL; Chiorboli C; Urner LM; Gisselbrecht JP; Boudon C; Armaroli N; Diederich F Chemistry; 2014 Jan; 20(1):202-16. PubMed ID: 24339058 [TBL] [Abstract][Full Text] [Related]
17. Enabling Racemization of Axially Chiral Subphthalocyanine-Tetracyanobutadiene-Aniline Enantiomers by Triplet State Photogeneration. Lavarda G; Bhattacharjee N; Brancato G; Torres T; Bottari G Angew Chem Int Ed Engl; 2020 Nov; 59(47):21224-21229. PubMed ID: 32755002 [TBL] [Abstract][Full Text] [Related]