These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34494832)
1. Substrate Analogues for the Enzyme-Catalyzed Detoxification of the Organophosphate Nerve Agents-Sarin, Soman, and Cyclosarin. Bigley AN; Harvey SP; Narindoshvili T; Raushel FM Biochemistry; 2021 Sep; 60(38):2875-2887. PubMed ID: 34494832 [TBL] [Abstract][Full Text] [Related]
2. Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Tsai PC; Fox N; Bigley AN; Harvey SP; Barondeau DP; Raushel FM Biochemistry; 2012 Aug; 51(32):6463-75. PubMed ID: 22809162 [TBL] [Abstract][Full Text] [Related]
3. Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase. Barakat NH; Zheng X; Gilley CB; MacDonald M; Okolotowicz K; Cashman JR; Vyas S; Beck JM; Hadad CM; Zhang J Chem Res Toxicol; 2009 Oct; 22(10):1669-79. PubMed ID: 19715346 [TBL] [Abstract][Full Text] [Related]
4. Degradation of nerve agents by an organophosphate-degrading agent (OpdA). Dawson RM; Pantelidis S; Rose HR; Kotsonis SE J Hazard Mater; 2008 Sep; 157(2-3):308-14. PubMed ID: 18258361 [TBL] [Abstract][Full Text] [Related]
5. Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents. Briseño-Roa L; Hill J; Notman S; Sellers D; Smith AP; Timperley CM; Wetherell J; Williams NH; Williams GR; Fersht AR; Griffiths AD J Med Chem; 2006 Jan; 49(1):246-55. PubMed ID: 16392809 [TBL] [Abstract][Full Text] [Related]
6. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase. Gilley C; MacDonald M; Nachon F; Schopfer LM; Zhang J; Cashman JR; Lockridge O Chem Res Toxicol; 2009 Oct; 22(10):1680-8. PubMed ID: 19715348 [TBL] [Abstract][Full Text] [Related]
7. Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase. Tsai PC; Bigley A; Li Y; Ghanem E; Cadieux CL; Kasten SA; Reeves TE; Cerasoli DM; Raushel FM Biochemistry; 2010 Sep; 49(37):7978-87. PubMed ID: 20701311 [TBL] [Abstract][Full Text] [Related]
8. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Bouknight KD; Jurkouich KM; Compton JR; Khavrutskii IV; Guelta MA; Harvey SP; Legler PM Biochem Pharmacol; 2020 Jul; 177():113980. PubMed ID: 32305437 [TBL] [Abstract][Full Text] [Related]
9. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination. Bigley AN; Desormeaux E; Xiang DF; Bae SY; Harvey SP; Raushel FM Biochemistry; 2019 Apr; 58(15):2039-2053. PubMed ID: 30893549 [TBL] [Abstract][Full Text] [Related]
10. Organophosphate nerve agent toxicity in Hydra attenuata. Lum KT; Huebner HJ; Li Y; Phillips TD; Raushel FM Chem Res Toxicol; 2003 Aug; 16(8):953-7. PubMed ID: 12924922 [TBL] [Abstract][Full Text] [Related]
11. The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Bigley AN; Raushel FM Chem Biol Interact; 2019 Aug; 308():80-88. PubMed ID: 31100274 [TBL] [Abstract][Full Text] [Related]
12. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters. Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279 [TBL] [Abstract][Full Text] [Related]
13. Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase. Li WS; Lum KT; Chen-Goodspeed M; Sogorb MA; Raushel FM Bioorg Med Chem; 2001 Aug; 9(8):2083-91. PubMed ID: 11504644 [TBL] [Abstract][Full Text] [Related]
14. Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase. Tsai PC; Fan Y; Kim J; Yang L; Almo SC; Gao YQ; Raushel FM Biochemistry; 2010 Sep; 49(37):7988-97. PubMed ID: 20695627 [TBL] [Abstract][Full Text] [Related]
15. Novel human butyrylcholinesterase variants: toward organophosphonate detoxication. Dwyer M; Javor S; Ryan DA; Smith EM; Wang B; Zhang J; Cashman JR Biochemistry; 2014 Jul; 53(27):4476-87. PubMed ID: 24902043 [TBL] [Abstract][Full Text] [Related]
16. Molecular docking and toxicity studies of nerve agents against acetylcholinesterase (AChE). Ham Sembiring M; Nursanti O; Aisyah Rahmania T J Recept Signal Transduct Res; 2023 Oct; 43(5):115-122. PubMed ID: 38189350 [TBL] [Abstract][Full Text] [Related]
17. Currently used cholinesterase reactivators against nerve agent intoxication: comparison of their effectivity in vitro. Kuca K; Jun D; Bajgar J Drug Chem Toxicol; 2007; 30(1):31-40. PubMed ID: 17364862 [TBL] [Abstract][Full Text] [Related]
18. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Ghanem E; Raushel FM Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683 [TBL] [Abstract][Full Text] [Related]
19. Molecular Docking, Metal Substitution and Hydrolysis Reaction of Chiral Substrates of Phosphotriesterase. de Castro AA; Caetano MS; Silva TC; Mancini DT; Rocha EP; da Cunha EF; Ramalho TC Comb Chem High Throughput Screen; 2016; 19(4):334-44. PubMed ID: 27012528 [TBL] [Abstract][Full Text] [Related]
20. Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. Amitai G; Gaidukov L; Adani R; Yishay S; Yacov G; Kushnir M; Teitlboim S; Lindenbaum M; Bel P; Khersonsky O; Tawfik DS; Meshulam H FEBS J; 2006 May; 273(9):1906-19. PubMed ID: 16640555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]