These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 34494892)

  • 21. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38.
    Graeff R; Liu Q; Kriksunov IA; Kotaka M; Oppenheimer N; Hao Q; Lee HC
    J Biol Chem; 2009 Oct; 284(40):27629-36. PubMed ID: 19640843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity.
    Piedra-Quintero ZL; Wilson Z; Nava P; Guerau-de-Arellano M
    Front Immunol; 2020; 11():597959. PubMed ID: 33329591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Senescent cells promote tissue NAD
    Covarrubias AJ; Kale A; Perrone R; Lopez-Dominguez JA; Pisco AO; Kasler HG; Schmidt MS; Heckenbach I; Kwok R; Wiley CD; Wong HS; Gibbs E; Iyer SS; Basisty N; Wu Q; Kim IJ; Silva E; Vitangcol K; Shin KO; Lee YM; Riley R; Ben-Sahra I; Ott M; Schilling B; Scheibye-Knudsen M; Ishihara K; Quake SR; Newman J; Brenner C; Campisi J; Verdin E
    Nat Metab; 2020 Nov; 2(11):1265-1283. PubMed ID: 33199924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CD38 Deficiency Protects Mice from High Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Activating NAD
    Xie L; Wen K; Li Q; Huang CC; Zhao JL; Zhao QH; Xiao YF; Guan XH; Qian YS; Gan L; Wang LF; Deng KY; Xin HB
    Int J Biol Sci; 2021; 17(15):4305-4315. PubMed ID: 34803499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.
    Xu M; Zhang Y; Xia M; Li XX; Ritter JK; Zhang F; Li PL
    Free Radic Biol Med; 2012 Jan; 52(2):357-65. PubMed ID: 22100343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry.
    Jiang H; Sherwood R; Zhang S; Zhu X; Liu Q; Graeff R; Kriksunov IA; Lee HC; Hao Q; Lin H
    Anal Biochem; 2013 Feb; 433(2):218-26. PubMed ID: 23123429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of aryl hydrocarbon receptor (AHR) and the NAD
    Bock KW
    Biochem Pharmacol; 2020 May; 175():113905. PubMed ID: 32169417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD binding by human CD38 analyzed by Trp189 fluorescence.
    Wolters V; Rosche A; Bauche A; Kulow F; Harneit A; Fliegert R; Guse AH
    Biochim Biophys Acta Mol Cell Res; 2019 Jul; 1866(7):1189-1196. PubMed ID: 30472140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen.
    Inageda K; Takahashi K; Tokita K; Nishina H; Kanaho Y; Kukimoto I; Kontani K; Hoshino S; Katada T
    J Biochem; 1995 Jan; 117(1):125-31. PubMed ID: 7775378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CD38 and MGluR1 as possible signaling molecules involved in epileptogenesis: A potential role for NAD
    Khodaverdian S; Dashtban-Moghadam E; Dabirmanesh B; Mirnajafi-Zadeh J; Taleb M; Khajeh K; Fathollahi Y
    Brain Res; 2021 Aug; 1765():147509. PubMed ID: 33930374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD
    Ogura Y; Kitada M; Xu J; Monno I; Koya D
    Aging (Albany NY); 2020 Jun; 12(12):11325-11336. PubMed ID: 32507768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CD38 positively regulates postnatal development of astrocytes cell-autonomously and oligodendrocytes non-cell-autonomously.
    Hattori T; Kaji M; Ishii H; Jureepon R; Takarada-Iemata M; Minh Ta H; Manh Le T; Konno A; Hirai H; Shiraishi Y; Ozaki N; Yamamoto Y; Okamoto H; Yokoyama S; Higashida H; Kitao Y; Hori O
    Glia; 2017 Jun; 65(6):974-989. PubMed ID: 28295574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal.
    Zhang H; Graeff R; Chen Z; Zhang L; Zhang L; Lee H; Hao Q
    J Mol Biol; 2011 Jan; 405(4):1070-8. PubMed ID: 21134381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of NAD+ glycohydrolase and ADP-ribosyl cyclase activities of leukocyte cell surface antigen CD38 by gangliosides.
    Hara-Yokoyama M; Kukimoto I; Nishina H; Kontani K; Hirabayashi Y; Irie F; Sugiya H; Furuyama S; Katada T
    J Biol Chem; 1996 May; 271(22):12951-5. PubMed ID: 8662799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct physical condition and social behavior phenotypes of CD157 and CD38 knockout mice during aging.
    Gerasimenko M; Lopatina O; Shabalova AA; Cherepanov SM; Salmina AB; Yokoyama S; Goto H; Okamoto H; Yamamoto Y; Ishihara K; Higashida H
    PLoS One; 2020; 15(12):e0244022. PubMed ID: 33326496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mice lacking the ADP ribosyl cyclase CD38 exhibit attenuated renal vasoconstriction to angiotensin II, endothelin-1, and norepinephrine.
    Thai TL; Arendshorst WJ
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F169-76. PubMed ID: 19403649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CD38 downregulation modulates NAD
    Benzi A; Sturla L; Heine M; Fischer AW; Spinelli S; Magnone M; Sociali G; Parodi A; Fenoglio D; Emionite L; Koch-Nolte F; Mittrücker HW; Guse AH; De Flora A; Zocchi E; Heeren J; Bruzzone S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jan; 1866(1):158819. PubMed ID: 33010451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ROS-Mediated 15-Hydroxyprostaglandin Dehydrogenase Degradation via Cysteine Oxidation Promotes NAD
    Wang W; Hu Y; Wang X; Wang Q; Deng H
    Cell Chem Biol; 2018 Mar; 25(3):255-261.e4. PubMed ID: 29307841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAD+-consuming enzymes in immune defense against viral infection.
    Shang J; Smith MR; Anmangandla A; Lin H
    Biochem J; 2021 Dec; 478(23):4071-4092. PubMed ID: 34871367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of CD38/cADPR signaling in obstructive pulmonary diseases.
    Guedes AG; Dileepan M; Jude JA; Deshpande DA; Walseth TF; Kannan MS
    Curr Opin Pharmacol; 2020 Apr; 51():29-33. PubMed ID: 32480246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.