BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34495305)

  • 1. Disentangling environmental drivers of circadian metabolism in desert-adapted mice.
    Colella JP; Blumstein DM; MacManes MD
    J Exp Biol; 2021 Sep; 224(18):. PubMed ID: 34495305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the reproductive transcriptomic correlates of acute dehydration in males in the desert-adapted rodent, Peromyscus eremicus.
    Kordonowy L; MacManes M
    BMC Genomics; 2017 Jun; 18(1):473. PubMed ID: 28645248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and biochemical changes associated with acute experimental dehydration in the desert adapted mouse,
    Kordonowy L; Lombardo KD; Green HL; Dawson MD; Bolton EA; LaCourse S; MacManes MD
    Physiol Rep; 2017 Mar; 5(6):. PubMed ID: 28330954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of age and torpor on the circadian rhythms of body temperature, activity, and body weight in the mouse (Peromyscus leucopus).
    Duffy PH; Feuers RJ; Hart RW
    Prog Clin Biol Res; 1987; 227B():111-20. PubMed ID: 3628326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When the tap runs dry: the physiological effects of acute experimental dehydration in Peromyscus eremicus.
    Blumstein DM; MacManes MD
    J Exp Biol; 2023 Dec; 226(23):. PubMed ID: 37921453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperiod affects daily torpor and tissue fatty acid composition in deer mice.
    Geiser F; McAllan BM; Kenagy GJ; Hiebert SM
    Naturwissenschaften; 2007 Apr; 94(4):319-25. PubMed ID: 17160415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When the tap runs dry: The physiological effects of acute experimental dehydration in
    Blumstein DM; MacManes MD
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Winter adaptations of male deer mice (Peromyscus maniculatus) and prairie voles (Microtus ochrogaster) that vary in reproductive responsiveness to photoperiod.
    Moffatt CA; DeVries AC; Nelson RJ
    J Biol Rhythms; 1993; 8(3):221-32. PubMed ID: 8280911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of reproductive hormones on the torpor patterns of the marsupial Sminthopsis macroura: bet-hedging in an unpredictable environment.
    McAllan BM; Feay N; Bradley AJ; Geiser F
    Gen Comp Endocrinol; 2012 Nov; 179(2):265-76. PubMed ID: 22974513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clocks and meals keep mice from being cool.
    van der Vinne V; Bingaman MJ; Weaver DR; Swoap SJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29903839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization.
    Kirsch R; Ouarour A; Pévet P
    J Comp Physiol A; 1991 Jan; 168(1):121-8. PubMed ID: 2033564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The temporal organization of daily torpor and hibernation: circadian and circannual rhythms.
    Körtner G; Geiser F
    Chronobiol Int; 2000 Mar; 17(2):103-28. PubMed ID: 10757457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body Temperature and Activity Adaptation of Short Photoperiod-Exposed Djungarian Hamsters (
    Haugg E; Herwig A; Diedrich V
    Front Physiol; 2021; 12():626779. PubMed ID: 34305626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome oxidase activity in brown fat varies with reproductive response and use of torpor in deer mice.
    Blank JL; Nelson RJ; Buchberger A
    Physiol Behav; 1988; 43(3):301-6. PubMed ID: 2845453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific metabolism during normothermy and daily torpor in deer mice (Peromyscus maniculatus).
    Nestler JR
    J Exp Zool; 1992 Apr; 261(4):406-13. PubMed ID: 1569409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited Evidence for Parallel Evolution Among Desert-Adapted Peromyscus Deer Mice.
    Colella JP; Tigano A; Dudchenko O; Omer AD; Khan R; Bochkov ID; Aiden EL; MacManes MD
    J Hered; 2021 May; 112(3):286-302. PubMed ID: 33686424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent.
    Tigano A; Colella JP; MacManes MD
    Mol Ecol; 2020 Apr; 29(7):1300-1314. PubMed ID: 32130752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus).
    Ruf T; Stieglitz A; Steinlechner S; Blank JL; Heldmaier G
    J Exp Zool; 1993 Oct; 267(2):104-12. PubMed ID: 8409896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foraging sequence, energy intake and torpor: an individual-based field study of energy balancing in desert golden spiny mice.
    Levy O; Dayan T; Rotics S; Kronfeld-Schor N
    Ecol Lett; 2012 Nov; 15(11):1240-1248. PubMed ID: 22906198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels.
    Ikeno T; Williams CT; Buck CL; Barnes BM; Yan L
    J Biol Rhythms; 2017 Jun; 32(3):246-256. PubMed ID: 28452286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.