These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 34495523)
41. Examination of the Suitability of Attractive Target Genes for RNAi-Based Pest Control. Zhang W Methods Mol Biol; 2022; 2360():175-185. PubMed ID: 34495515 [TBL] [Abstract][Full Text] [Related]
42. A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Zheng Y; Hu Y; Yan S; Zhou H; Song D; Yin M; Shen J Pest Manag Sci; 2019 Jul; 75(7):1993-1999. PubMed ID: 30610748 [TBL] [Abstract][Full Text] [Related]
43. Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (Acyrthosiphon pisum). Ye C; Jiang YD; An X; Yang L; Shang F; Niu J; Wang JJ Sci Rep; 2019 Mar; 9(1):3694. PubMed ID: 30842508 [TBL] [Abstract][Full Text] [Related]
44. Effect of RNAi targeting CYP6CY3 on the growth, development and insecticide susceptibility of Aphis gossypii by using nanocarrier-based transdermal dsRNA delivery system. Linyu W; Lianjun Z; Ning L; Xiwu G; Xiaoning L Pestic Biochem Physiol; 2021 Aug; 177():104878. PubMed ID: 34301368 [TBL] [Abstract][Full Text] [Related]
45. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing. Ma ZZ; Zhou H; Wei YL; Yan S; Shen J Pest Manag Sci; 2020 Jul; 76(7):2505-2512. PubMed ID: 32077251 [TBL] [Abstract][Full Text] [Related]
46. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Mehlhorn S; Ulrich J; Baden CU; Buer B; Maiwald F; Lueke B; Geibel S; Bucher G; Nauen R Pestic Biochem Physiol; 2021 Jul; 176():104870. PubMed ID: 34119215 [TBL] [Abstract][Full Text] [Related]
47. Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects. Santos D; Mingels L; Vogel E; Wang L; Christiaens O; Cappelle K; Wynant N; Gansemans Y; Van Nieuwerburgh F; Smagghe G; Swevers L; Vanden Broeck J Viruses; 2019 Aug; 11(8):. PubMed ID: 31405199 [TBL] [Abstract][Full Text] [Related]
48. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Lucena-Leandro VS; Abreu EFA; Vidal LA; Torres CR; Junqueira CICVF; Dantas J; Albuquerque ÉVS Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555476 [TBL] [Abstract][Full Text] [Related]
49. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077 [TBL] [Abstract][Full Text] [Related]
50. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Šečić E; Kogel KH Curr Opin Biotechnol; 2021 Aug; 70():136-142. PubMed ID: 34000482 [TBL] [Abstract][Full Text] [Related]
51. The Synergistic Effect of Thiamethoxam and Synapsin dsRNA Targets Neurotransmission to Induce Mortality in Qu X; Wang S; Lin G; Li M; Shen J; Wang D Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012653 [TBL] [Abstract][Full Text] [Related]
52. Control of two insect pests by expression of a mismatch corrected double-stranded RNA in plants. Dong Y; Zhang Q; Mao Y; Wu M; Wang Z; Chang L; Zhang J Plant Biotechnol J; 2024 Jul; 22(7):2010-2019. PubMed ID: 38426894 [TBL] [Abstract][Full Text] [Related]
53. Non-Target Effects of dsRNA Molecules in Hemipteran Insects. Arora AK; Chung SH; Douglas AE Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33809132 [TBL] [Abstract][Full Text] [Related]
54. Development of a Ligation-Independent Cloning-Based Dual Vector System for RNA Interference in Plants. Zhao J; Rios CG; Xu J; Ahmad I; Song J Methods Mol Biol; 2022; 2408():283-292. PubMed ID: 35325429 [TBL] [Abstract][Full Text] [Related]
55. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Singewar K; Fladung M Funct Integr Genomics; 2023 May; 23(2):185. PubMed ID: 37243792 [TBL] [Abstract][Full Text] [Related]
56. Biosafety aspects of RNAi-based pests control. Chen Y; De Schutter K Pest Manag Sci; 2024 Aug; 80(8):3697-3706. PubMed ID: 38520331 [TBL] [Abstract][Full Text] [Related]
57. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants. Meng F; Li Y; Zang Z; Li N; Ran R; Cao Y; Li T; Zhou Q; Li W Pest Manag Sci; 2017 Dec; 73(12):2447-2455. PubMed ID: 28598538 [TBL] [Abstract][Full Text] [Related]
58. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Joga MR; Zotti MJ; Smagghe G; Christiaens O Front Physiol; 2016; 7():553. PubMed ID: 27909411 [TBL] [Abstract][Full Text] [Related]
59. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis). Wang K; Peng Y; Chen J; Peng Y; Wang X; Shen Z; Han Z Pestic Biochem Physiol; 2020 May; 165():104467. PubMed ID: 32359547 [TBL] [Abstract][Full Text] [Related]
60. Development of efficient RNAi methods in the corn leafhopper Dalbulus maidis, a promising application for pest control. Dalaisón-Fuentes LI; Pascual A; Gazza E; Welchen E; Rivera-Pomar R; Catalano MI Pest Manag Sci; 2022 Jul; 78(7):3108-3116. PubMed ID: 35442515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]