These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34495639)

  • 1. Ink-Lithography for Property Engineering and Patterning of Nanocrystal Thin Films.
    Ahn J; Jeon S; Woo HK; Bang J; Lee YM; Neuhaus SJ; Lee WS; Park T; Lee SY; Jung BK; Joh H; Seong M; Choi JH; Yoon HG; Kagan CR; Oh SJ
    ACS Nano; 2021 Oct; 15(10):15667-15675. PubMed ID: 34495639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices.
    Choi YC; Lee J; Ng JJ; Kagan CR
    Acc Chem Res; 2023 Jul; 56(13):1791-1802. PubMed ID: 37342079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible colloidal nanocrystal electronics.
    Kagan CR
    Chem Soc Rev; 2019 Mar; 48(6):1626-1641. PubMed ID: 30206583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.
    Kim DK; Lai Y; Diroll BT; Murray CB; Kagan CR
    Nat Commun; 2012; 3():1216. PubMed ID: 23169057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly patterning of ultrafine zirconia nanocrystal films fabricated on chemically patterned templates.
    Ma Q; Izu N; Masuda Y
    Nanotechnology; 2018 Dec; 29(49):495702. PubMed ID: 30207291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion Exchange Lithography: Localized Ion Exchange Reactions for Spatial Patterning of Perovskite Semiconductors and Insulators.
    Helmbrecht L; Futscher MH; Muscarella LA; Ehrler B; Noorduin WL
    Adv Mater; 2021 May; 33(20):e2005291. PubMed ID: 33843089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Patterning of Colloidal Nanocrystal Films for Nanophotonic Applications Using Direct Write Electron Beam Lithography.
    Dement DB; Quan MK; Ferry VE
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14970-14979. PubMed ID: 30932468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the colloidal nanocrystal library to construct electronic devices.
    Choi JH; Wang H; Oh SJ; Paik T; Sung P; Sung J; Ye X; Zhao T; Diroll BT; Murray CB; Kagan CR
    Science; 2016 Apr; 352(6282):205-8. PubMed ID: 27124455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition States of Nanocrystal Thin Films during Ligand-Exchange Processes for Potential Applications in Wearable Sensors.
    Lee SW; Joh H; Seong M; Lee WS; Choi JH; Oh SJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25502-25510. PubMed ID: 29968456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Nanofabrication via Chemo-Mechanical Transformation of Nanocrystal/Bulk Heterostructures.
    Zhang M; Guo J; Yu Y; Wu Y; Yun H; Jishkariani D; Chen W; Greybush NJ; Kübel C; Stein A; Murray CB; Kagan CR
    Adv Mater; 2018 May; 30(22):e1800233. PubMed ID: 29658166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
    Cho JW; Park SJ; Kim W; Min BK
    Nanotechnology; 2012 Jul; 23(26):265401. PubMed ID: 22699212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystal film patterning by inhibiting cation exchange via electron-beam or X-ray lithography.
    Miszta K; Greullet F; Marras S; Prato M; Toma A; Arciniegas M; Manna L; Krahne R
    Nano Lett; 2014; 14(4):2116-22. PubMed ID: 24593136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Driven Sintering of Colloidal Cu Nanocrystals for Multiscale Electronic and Optical Devices.
    Xu J; Zhao T; Zaccarin AM; Du X; Yang S; Ning Y; Xiao Q; Kramadhati S; Choi YC; Murray CB; Olsson RH; Kagan CR
    ACS Nano; 2024 Jul; 18(27):17611-17621. PubMed ID: 38916981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-processed germanium nanocrystal thin films as materials for low-cost optical and electronic devices.
    Holman ZC; Kortshagen UR
    Langmuir; 2009 Oct; 25(19):11883-9. PubMed ID: 19642659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the Electronic Structure of Nanocrystal Thin Films Using Energy-Resolved Electrochemical Impedance Spectroscopy.
    Volk S; Yazdani N; Sanusoglu E; Yarema O; Yarema M; Wood V
    J Phys Chem Lett; 2018 Mar; 9(6):1384-1392. PubMed ID: 29485880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals.
    Holman ZC; Kortshagen UR
    Nanotechnology; 2010 Aug; 21(33):335302. PubMed ID: 20660954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates.
    Saran N; Parikh K; Suh DS; Muñoz E; Kolla H; Manohar SK
    J Am Chem Soc; 2004 Apr; 126(14):4462-3. PubMed ID: 15070332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.
    Swisher SL; Volkman SK; Subramanian V
    ACS Appl Mater Interfaces; 2015 May; 7(19):10069-75. PubMed ID: 25915094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Optical Patterning of Quantum Dot Light-Emitting Diodes via In Situ Ligand Exchange.
    Cho H; Pan JA; Wu H; Lan X; Coropceanu I; Wang Y; Cho W; Hill EA; Anderson JS; Talapin DV
    Adv Mater; 2020 Nov; 32(46):e2003805. PubMed ID: 33002295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust and Bright Photoluminescence from Colloidal Nanocrystal/Al
    Palei M; Caligiuri V; Kudera S; Krahne R
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22356-22362. PubMed ID: 29893110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.