These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34495668)

  • 21. Advanced Activity-Based Protein Profiling Application Strategies for Drug Development.
    Wang S; Tian Y; Wang M; Wang M; Sun GB; Sun XB
    Front Pharmacol; 2018; 9():353. PubMed ID: 29686618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery.
    Benns HJ; Wincott CJ; Tate EW; Child MA
    Curr Opin Chem Biol; 2021 Feb; 60():20-29. PubMed ID: 32768892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.
    Tyanova S; Temu T; Cox J
    Nat Protoc; 2016 Dec; 11(12):2301-2319. PubMed ID: 27809316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis.
    White CA; Oey N; Emili A
    J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Super-SILAC: current trends and future perspectives.
    Shenoy A; Geiger T
    Expert Rev Proteomics; 2015 Feb; 12(1):13-9. PubMed ID: 25404501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ICPLQuant - A software for non-isobaric isotopic labeling proteomics.
    Brunner A; Keidel EM; Dosch D; Kellermann J; Lottspeich F
    Proteomics; 2010 Jan; 10(2):315-26. PubMed ID: 19953540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping in vivo target interaction profiles of covalent inhibitors using chemical proteomics with label-free quantification.
    van Rooden EJ; Florea BI; Deng H; Baggelaar MP; van Esbroeck ACM; Zhou J; Overkleeft HS; van der Stelt M
    Nat Protoc; 2018 Apr; 13(4):752-767. PubMed ID: 29565900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics.
    Cox J; Matic I; Hilger M; Nagaraj N; Selbach M; Olsen JV; Mann M
    Nat Protoc; 2009; 4(5):698-705. PubMed ID: 19373234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry.
    Ghanat Bari M; Ramirez N; Wang Z; Zhang JM
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current developments in activity-based protein profiling.
    Willems LI; Overkleeft HS; van Kasteren SI
    Bioconjug Chem; 2014 Jul; 25(7):1181-91. PubMed ID: 24946272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Proteome Profiling by Isobaric Labeling, Extensive Liquid Chromatography, Mass Spectrometry, and Software-assisted Quantification.
    High AA; Tan H; Pagala VR; Niu M; Cho JH; Wang X; Bai B; Peng J
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Update on Proteomic approaches to uncovering virus-induced protein alterations and virus -host protein interactions during the progression of viral infection.
    Coombs KM
    Expert Rev Proteomics; 2020; 17(7-8):513-532. PubMed ID: 32910682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Increasing Impact of Activity-Based Protein Profiling in Plant Science.
    Morimoto K; van der Hoorn RA
    Plant Cell Physiol; 2016 Mar; 57(3):446-61. PubMed ID: 26872839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of In Vivo Target Engagement Using Microfluidic Activity-Based Protein Profiling.
    Reardon HT; Herbst RA; Henry CL; Herbst DM; Ngo N; Cisar JS; Weber OD; Niphakis MJ; O'Neill GP
    SLAS Technol; 2019 Oct; 24(5):489-498. PubMed ID: 31199699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
    Haynes SE; Majmudar JD; Martin BR
    Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. i-RUBY: a novel software for quantitative analysis of highly accurate shotgun-proteomics liquid chromatography/tandem mass spectrometry data obtained without stable-isotope labeling of proteins.
    Wada K; Ogiwara A; Nagasaka K; Tanaka N; Komatsu Y
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):960-8. PubMed ID: 21416533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absolute quantification of proteins using element mass spectrometry and generic standards.
    Nosti AJ; Barrio LC; Calderón Celis F; Soldado A; Encinar JR
    J Proteomics; 2022 Mar; 256():104499. PubMed ID: 35092838
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.