BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34495762)

  • 1. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis is a primary ATP-release mechanism in human erythrocytes.
    Sikora J; Orlov SN; Furuya K; Grygorczyk R
    Blood; 2014 Sep; 124(13):2150-7. PubMed ID: 25097178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway.
    Keller AS; Diederich L; Panknin C; DeLalio LJ; Drake JC; Sherman R; Jackson EK; Yan Z; Kelm M; Cortese-Krott MM; Isakson BE
    Am J Physiol Cell Physiol; 2017 Dec; 313(6):C593-C603. PubMed ID: 28855161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.
    Mairbäurl H; Ruppe FA; Bärtsch P
    Med Sci Sports Exerc; 2013 Oct; 45(10):1941-7. PubMed ID: 23575515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans.
    Racine ML; Dinenno FA
    J Physiol; 2019 Sep; 597(17):4503-4519. PubMed ID: 31310005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
    Sprague RS; Stephenson AH; Ellsworth ML; Keller C; Lonigro AJ
    Exp Biol Med (Maywood); 2001 May; 226(5):434-9. PubMed ID: 11393171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP.
    Dufour SP; Patel RP; Brandon A; Teng X; Pearson J; Barker H; Ali L; Yuen AH; Smolenski RT; González-Alonso J
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1936-46. PubMed ID: 20852046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes.
    Faris A; Spence DM
    Analyst; 2008 May; 133(5):678-82. PubMed ID: 18427692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 6-hour exposure to 20 degrees C on the ATP content and other biochemical measures of CPDA-1 packed red cells.
    Ecker T; Hitzler WE
    Clin Lab; 2000; 46(5-6):291-3. PubMed ID: 10853239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage.
    de Korte D; Kleine M; Korsten HG; Verhoeven AJ
    Transfusion; 2008 Jun; 48(6):1081-9. PubMed ID: 18373504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rho-kinase inhibition improves haemodynamic responses and circulating ATP during hypoxia and moderate intensity handgrip exercise in healthy older adults.
    Racine ML; Terwoord JD; Ketelhut NB; Bachman NP; Richards JC; Luckasen GJ; Dinenno FA
    J Physiol; 2022 Jul; 600(14):3265-3285. PubMed ID: 35575293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro quality of red blood cells (RBCs) collected by multicomponent apheresis compared to manually collected RBCs during 49 days of storage.
    Picker SM; Radojska SM; Gathof BS
    Transfusion; 2007 Apr; 47(4):687-96. PubMed ID: 17381628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a flow-cell system to investigate virucidal dimethylmethylene blue phototreatment in two RBC additive solutions.
    Wagner S; Skripchenko A; Thompson-Montgomery D
    Transfusion; 2002 Sep; 42(9):1200-5. PubMed ID: 12430679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal.
    Diesen DL; Hess DT; Stamler JS
    Circ Res; 2008 Aug; 103(5):545-53. PubMed ID: 18658051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes.
    Shirakashi R; Sisario D; Taban D; Korsa T; Wanner SB; Neubauer J; Djuzenova CS; Zimmermann H; Sukhorukov VL
    Biomech Model Mechanobiol; 2023 Apr; 22(2):417-432. PubMed ID: 36357646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation.
    Cao Z; Bell JB; Mohanty JG; Nagababu E; Rifkind JM
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1494-503. PubMed ID: 19700624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow.
    Jensen FB
    J Exp Biol; 2009 Nov; 212(Pt 21):3387-93. PubMed ID: 19837879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine triphosphate release by osmotic shock and hemoglobin A1C in diabetic subjects' erythrocytes.
    Petruzzi E; Orlando C; Pinzani P; Sestini R; Del Rosso A; Dini G; Tanganelli E; Buggiani A; Pazzagli M
    Metabolism; 1994 Apr; 43(4):435-40. PubMed ID: 8159099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrifugation-induced release of ATP from red blood cells.
    Mancuso JE; Jayaraman A; Ristenpart WD
    PLoS One; 2018; 13(9):e0203270. PubMed ID: 30183749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.