These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34495839)

  • 1. MBioTracker: Multimodal Self-Aware Bio-Monitoring Wearable System for Online Workload Detection.
    DellrAgnola F; Pale U; Marino R; Arza A; Atienza D
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):994-1007. PubMed ID: 34495839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions With Drones.
    DellrAgnola F; Jao PK; Arza A; Chavarriaga R; Millan JDR; Floreano D; Atienza D
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4751-4762. PubMed ID: 35759604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Cognitive Workload Monitoring Based on Machine Learning Using Physiological Signals in Rescue Missions.
    Momeni N; Dell'Agnola F; Arza A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3779-3785. PubMed ID: 31946697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices.
    Zanetti R; Arza A; Aminifar A; Atienza D
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):265-277. PubMed ID: 34166183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAFS: Cost-Aware Features Selection Method for Multimodal Stress Monitoring on Wearable Devices.
    Momeni N; Valdes AA; Rodrigues J; Sandi C; Atienza D
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1072-1084. PubMed ID: 34543185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor Location Optimization of Wireless Wearable fNIRS System for Cognitive Workload Monitoring Using a Data-Driven Approach for Improved Wearability.
    Siddiquee MR; Atri R; Marquez JS; Hasan SMS; Ramon R; Bai O
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of wearable physiological sensors to predict cognitive workload in a visuospatial learning task.
    Fine MS; Lombardo JM; Colombe JB; Gawron VJ; Brokaw EB
    Technol Health Care; 2022; 30(3):647-660. PubMed ID: 34397440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Workload Tracking Using Human Activity Recognition with Wearable Devices.
    Manjarres J; Narvaez P; Gasser K; Percybrooks W; Pardo M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Investigation of Speech Features, Plant System Alarms, and Operator-System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work.
    Braarud PØ; Bodal T; Hulsund JE; Louka MN; Nihlwing C; Nystad E; Svengren H; Wingstedt E
    Hum Factors; 2021 Aug; 63(5):736-756. PubMed ID: 33054415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable bio signal monitoring system applied to aviation safety.
    Sungho Kim ; Booyong Choi ; Taehwan Cho ; Yongkyun Lee ; Hyojin Koo ; Dongsoo Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2349-2352. PubMed ID: 29060369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardware/Software Co-design of Fractal Features based Fall Detection System.
    Tahir A; Morison G; Skelton DA; Gibson RM
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time prediction of short-timescale fluctuations in cognitive workload.
    Boehm U; Matzke D; Gretton M; Castro S; Cooper J; Skinner M; Strayer D; Heathcote A
    Cogn Res Princ Implic; 2021 Apr; 6(1):30. PubMed ID: 33835271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive R-Peak Detection on Wearable ECG Sensors for High-Intensity Exercise.
    De Giovanni E; Teijeiro T; Millet GP; Atienza D
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):941-953. PubMed ID: 36083965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study.
    Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B
    J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform Using Hyperdimensional Computing.
    Benatti S; Montagna F; Kartsch V; Rahimi A; Rossi D; Benini L
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):516-528. PubMed ID: 31056519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
    Sharma H; Drukker L; Papageorghiou AT; Noble JA
    Comput Biol Med; 2021 Aug; 135():104589. PubMed ID: 34198044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications.
    Sodhro AH; Sangaiah AK; Sodhro GH; Lohano S; Pirbhulal S
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29558433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance-Based Detection of Cough, Wheeze, and Breath Sounds on Wearable Devices.
    Xue B; Shi W; Chotirmall SH; Koh VCA; Ang YY; Tan RX; Ser W
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning.
    Varandas R; Lima R; Bermúdez I Badia S; Silva H; Gamboa H
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.