These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 34495859)

  • 1. ALIS: Learning Affective Causality Behind Daily Activities From a Wearable Life-Log System.
    Kim BH; Jo S; Choi S
    IEEE Trans Cybern; 2022 Dec; 52(12):13212-13224. PubMed ID: 34495859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wearable device for emotional recognition using facial expression and physiological response.
    Jangho Kwon ; Da-Hye Kim ; Wanjoo Park ; Laehyun Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5765-5768. PubMed ID: 28269564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Suitable Biomarkers for Stress and Emotion Detection for Future Personal Affective Wearable Sensors.
    Zamkah A; Hui T; Andrews S; Dey N; Shi F; Sherratt RS
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32316280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study.
    Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B
    J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Approach for Human Wellbeing and Environmental Assessment Based on a Wearable IoT System: A Pilot Case Study in Singapore.
    Salamone F; Sibilio S; Masullo M
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices.
    Montesinos V; Dell'Agnola F; Arza A; Aminifar A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2196-2201. PubMed ID: 31946337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities.
    Kim KH; Cho SB
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative and Real-Time Evaluation of Human Respiration Signals with a Shape-Conformal Wireless Sensing System.
    Chen S; Qian G; Ghanem B; Wang Y; Shu Z; Zhao X; Yang L; Liao X; Zheng Y
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203460. PubMed ID: 36089657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wrapper Feature Selection Algorithm: An Emotional Assessment Using Physiological Recordings from Wearable Sensors.
    Mohino-Herranz I; Gil-Pita R; García-Gómez J; Rosa-Zurera M; Seoane F
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coverage of Emotion Recognition for Common Wearable Biosensors.
    Hui TKL; Sherratt RS
    Biosensors (Basel); 2018 Mar; 8(2):. PubMed ID: 29587375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation on Context Recognition Using Temperature Sensors in the Nostrils.
    Kodama R; Terada T; Tsukamoto M
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review.
    Jourdan T; Debs N; Frindel C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Wearable EEG Devices Specialized for Passive Brain-Computer Interface Applications.
    Park S; Han CH; Im CH
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey.
    Can YS; Arnrich B; Ersoy C
    J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MsWH: A Multi-Sensory Hardware Platform for Capturing and Analyzing Physiological Emotional Signals.
    Asiain D; Ponce de León J; Beltrán JR
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensing and Actuation-Platforms Coupling Body Input-Output Modalities for Affective Technologies.
    Alfaras M; Primett W; Umair M; Windlin C; Karpashevich P; Chalabianloo N; Bowie D; Sas C; Sanches P; Höök K; Ersoy C; Gamboa H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotional valence sensing using a wearable facial EMG device.
    Sato W; Murata K; Uraoka Y; Shibata K; Yoshikawa S; Furuta M
    Sci Rep; 2021 Mar; 11(1):5757. PubMed ID: 33707605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and Use of the Emotional Context with Wearable Devices for Games and Intelligent Assistants.
    Nalepa GJ; Kutt K; Giżycka B; Jemioło P; Bobek S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A federated learning method for real-time emotion state classification from multi-modal streaming.
    Nandi A; Xhafa F
    Methods; 2022 Aug; 204():340-347. PubMed ID: 35314343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion assessment using Machine Learning and low-cost wearable devices.
    Laureanti R; Bilucaglia M; Zito M; Circi R; Fici A; Rivetti F; Valesi R; Oldrini C; Mainardi LT; Russo V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():576-579. PubMed ID: 33018054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.