These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34496126)

  • 1. Distribution and Chemical Composition of Lignin in Secondary Xylem of Cactaceae.
    Maceda A; Reyes-Rivera J; Soto-Hernández M; Terrazas T
    Chem Biodivers; 2021 Oct; 18(10):e2100431. PubMed ID: 34496126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.
    Reyes-Rivera J; Canché-Escamilla G; Soto-Hernández M; Terrazas T
    PLoS One; 2015; 10(4):e0123919. PubMed ID: 25880223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the Structural Chemical Composition of the Primary Xylem of Cactaceae: A Topochemical Perspective.
    Maceda A; Soto-Hernández M; Peña-Valdivia CB; Trejo C; Terrazas T
    Front Plant Sci; 2019; 10():1497. PubMed ID: 31850014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Characterization of Lignin in Four Cacti Wood: Implications of Lignification in the Growth Form and Succulence.
    Reyes-Rivera J; Soto-Hernández M; Canché-Escamilla G; Terrazas T
    Front Plant Sci; 2018; 9():1518. PubMed ID: 30386367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Composition of Cacti Wood and Comparison with the Wood of Other Taxonomic Groups.
    Maceda A; Soto-Hernández M; Peña-Valdivia CB; Terrazas T
    Chem Biodivers; 2018 Apr; 15(4):e1700574. PubMed ID: 29444386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose in Secondary Xylem of Cactaceae: Crystalline Composition and Anatomical Distribution.
    Maceda A; Soto-Hernández M; Terrazas T
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry.
    Saito K; Watanabe Y; Shirakawa M; Matsushita Y; Imai T; Koike T; Sano Y; Funada R; Fukazawa K; Fukushima K
    Plant J; 2012 Feb; 69(3):542-52. PubMed ID: 21978273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity.
    Chen F; Tobimatsu Y; Jackson L; Nakashima J; Ralph J; Dixon RA
    Plant J; 2013 Jan; 73(2):201-11. PubMed ID: 22957702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-band tracheids are present in almost all species of Cactaceae.
    Mauseth JD
    J Plant Res; 2004 Feb; 117(1):69-76. PubMed ID: 14639504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin structural variation in hardwood species.
    Santos RB; Capanema EA; Balakshin MY; Chang HM; Jameel H
    J Agric Food Chem; 2012 May; 60(19):4923-30. PubMed ID: 22533315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy.
    Agarwal UP; Ralph SA; Padmakshan D; Liu S; Foster CE
    J Agric Food Chem; 2019 Apr; 67(15):4367-4374. PubMed ID: 30916944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin.
    Shimizu S; Yokoyama T; Akiyama T; Matsumoto Y
    J Agric Food Chem; 2012 Jul; 60(26):6471-6. PubMed ID: 22694300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host responses and metabolic profiles of wood components in Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.
    Durkovič J; Kačík F; Olčák D; Kučerová V; Krajňáková J
    Ann Bot; 2014 Jul; 114(1):47-59. PubMed ID: 24854167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate and non-labor intensive method for the determination of syringyl to guaiacyl ratio in lignin.
    Govender M; Bush T; Spark A; Bose SK; Francis RC
    Bioresour Technol; 2009 Dec; 100(23):5834-9. PubMed ID: 19576762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry.
    Zhou C; Li Q; Chiang VL; Lucia LA; Griffis DP
    Anal Chem; 2011 Sep; 83(18):7020-6. PubMed ID: 21851065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin composition in cambial tissues of poplar.
    Christiernin M
    Plant Physiol Biochem; 2006; 44(11-12):700-6. PubMed ID: 17097296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Auxin and Gibberellin in Controlling Lignin Formation in Primary Phloem Fibers and in Xylem of Coleus blumei Stems.
    Aloni R; Tollier MT; Monties B
    Plant Physiol; 1990 Dec; 94(4):1743-7. PubMed ID: 16667911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate.
    Lima TRA; Carvalho ECD; Martins FR; Oliveira RS; Miranda RS; Müller CS; Pereira L; Bittencourt PRL; Sobczak JCMSM; Gomes-Filho E; Costa RC; Araújo FS
    New Phytol; 2018 Sep; 219(4):1252-1262. PubMed ID: 29767841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation from guaiacyl to syringyl lignin in the differentiating xylem of Robinia pseudoacacia.
    Yamauchi K; Fukushima K
    C R Biol; 2004; 327(9-10):791-7. PubMed ID: 15587070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase.
    Li L; Cheng XF; Leshkevich J; Umezawa T; Harding SA; Chiang VL
    Plant Cell; 2001 Jul; 13(7):1567-86. PubMed ID: 11449052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.