These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34496283)

  • 1. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment.
    Raymond Y; Bonany M; Lehmann C; Thorel E; Benítez R; Franch J; Espanol M; Solé-Martí X; Manzanares MC; Canal C; Ginebra MP
    Acta Biomater; 2021 Nov; 135():671-688. PubMed ID: 34496283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks.
    Raymond S; Maazouz Y; Montufar EB; Perez RA; González B; Konka J; Kaiser J; Ginebra MP
    Acta Biomater; 2018 Jul; 75():451-462. PubMed ID: 29842972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects.
    Brennan MÁ; Monahan DS; Brulin B; Gallinetti S; Humbert P; Tringides C; Canal C; Ginebra MP; Layrolle P
    Acta Biomater; 2021 Nov; 135():689-704. PubMed ID: 34520883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c.
    Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological response of 3D-printed
    Tian Y; Ma H; Yu X; Feng B; Yang Z; Zhang W; Wu C
    Biomed Mater; 2023 Mar; 18(3):. PubMed ID: 36898162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration.
    Shen HY; Xing F; Shang SY; Jiang K; Kuzmanović M; Huang FW; Liu Y; Luo E; Edeleva M; Cardon L; Huang S; Xiang Z; Xu JZ; Li ZM
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18658-18670. PubMed ID: 38587811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects.
    Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments.
    Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP
    Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing with star-shaped strands: A new approach to enhance in vivo bone regeneration.
    Raymond Y; Lehmann C; Thorel E; Benitez R; Riveiro A; Pou J; Manzanares MC; Franch J; Canal C; Ginebra MP
    Biomater Adv; 2022 Jun; 137():212807. PubMed ID: 35929234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic sequencing analysis.
    Sun X; Jiao X; Wang Z; Ma J; Wang T; Zhu D; Li H; Tang L; Li H; Wang C; Li Y; Xu C; Wang J; Gan Y; Jin W
    J Mater Chem B; 2023 Feb; 11(8):1725-1738. PubMed ID: 36723218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model.
    Xu Z; Sun Y; Dai H; Ma Y; Bing H
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium Modified β-Tricalcium Phosphate Induces Cell Osteogenic Differentiation In Vitro and Bone Regeneration In Vivo.
    Salamanca E; Pan YH; Sun YS; Hsueh HW; Dorj O; Yao WL; Lin JC; Teng NC; Watanabe I; Abe S; Wu YF; Chang WJ
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration.
    Deng L; Huang L; Pan H; Zhang Q; Que Y; Fan C; Chang J; Ni S; Yang C
    J Mater Chem B; 2023 Jun; 11(24):5469-5482. PubMed ID: 36723376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model.
    Diao J; OuYang J; Deng T; Liu X; Feng Y; Zhao N; Mao C; Wang Y
    Adv Healthc Mater; 2018 Sep; 7(17):e1800441. PubMed ID: 30044555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.