These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 34496350)
1. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. De Moor L; Smet J; Plovyt M; Bekaert B; Vercruysse C; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496350 [TBL] [Abstract][Full Text] [Related]
2. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
3. Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. De Moor L; Fernandez S; Vercruysse C; Tytgat L; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H Front Bioeng Biotechnol; 2020; 8():484. PubMed ID: 32523941 [TBL] [Abstract][Full Text] [Related]
4. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting. Benmeridja L; De Moor L; De Maere E; Vanlauwe F; Ryx M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Blondeel P; Declercq H J Tissue Eng Regen Med; 2020 Jun; 14(6):840-854. PubMed ID: 32336037 [TBL] [Abstract][Full Text] [Related]
5. High-throughput fabrication of vascularized spheroids for bioprinting. De Moor L; Merovci I; Baetens S; Verstraeten J; Kowalska P; Krysko DV; De Vos WH; Declercq H Biofabrication; 2018 Jun; 10(3):035009. PubMed ID: 29798932 [TBL] [Abstract][Full Text] [Related]
7. Tuning the Phenotype of Cartilage Tissue Mimics by Varying Spheroid Maturation and Methacrylamide-Modified Gelatin Hydrogel Characteristics. De Moor L; Minne M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Declercq H Macromol Biosci; 2021 May; 21(5):e2000401. PubMed ID: 33729714 [TBL] [Abstract][Full Text] [Related]
8. Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Luo C; Xie R; Zhang J; Liu Y; Li Z; Zhang Y; Zhang X; Yuan T; Chen Y; Fan W Tissue Eng Part C Methods; 2020 Jun; 26(6):306-316. PubMed ID: 32349648 [TBL] [Abstract][Full Text] [Related]
9. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316 [TBL] [Abstract][Full Text] [Related]
10. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Xu H; Casillas J; Krishnamoorthy S; Xu C Biomed Mater; 2020 Aug; 15(5):055021. PubMed ID: 32438356 [TBL] [Abstract][Full Text] [Related]
14. Engineering Highly Vascularized Bone Tissues by 3D Bioprinting of Granular Prevascularized Spheroids. Fang Y; Ji M; Wu B; Xu X; Wang G; Zhang Y; Xia Y; Li Z; Zhang T; Sun W; Xiong Z ACS Appl Mater Interfaces; 2023 Sep; 15(37):43492-43502. PubMed ID: 37691550 [TBL] [Abstract][Full Text] [Related]
15. Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering. Colle J; Blondeel P; De Bruyne A; Bochar S; Tytgat L; Vercruysse C; Van Vlierberghe S; Dubruel P; Declercq H J Mater Sci Mater Med; 2020 Mar; 31(4):36. PubMed ID: 32206922 [TBL] [Abstract][Full Text] [Related]
16. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
18. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
19. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
20. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]