These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 34496350)

  • 21. Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks.
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Adv Healthc Mater; 2020 Aug; 9(15):e1901142. PubMed ID: 31846229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering.
    Bhattacharyya A; Janarthanan G; Kim T; Taheri S; Shin J; Kim J; Bae HC; Han HS; Noh I
    Biomater Res; 2022 Oct; 26(1):54. PubMed ID: 36209133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting.
    J AS; Velayudhan S; Pr AK
    Biomed Mater; 2023 Jun; 18(4):. PubMed ID: 37220753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printing of vascularized hepatic tissues with a high cell density and heterogeneous microenvironment.
    Fang Y; Ji M; Yang Y; Guo Y; Sun R; Zhang T; Sun W; Xiong Z
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37429291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A heparin-functionalized bioink with sustained delivery of vascular endothelial growth factor for 3D bioprinting of prevascularized dermal constructs.
    Li M; Liu Z; Shen Z; Han L; Wang J; Sang S
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):130075. PubMed ID: 38340924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink.
    Muthusamy S; Kannan S; Lee M; Sanjairaj V; Lu WF; Fuh JYH; Sriram G; Cao T
    Biotechnol Bioeng; 2021 Aug; 118(8):3150-3163. PubMed ID: 34037982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane.
    Heidari F; Saadatmand M; Simorgh S
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127041. PubMed ID: 37742904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro.
    Twohig C; Helsinga M; Mansoorifar A; Athirasala A; Tahayeri A; França CM; Pajares SA; Abdelmoniem R; Scherrer S; Durual S; Ferracane J; Bertassoni LE
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111976. PubMed ID: 33812604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo evaluation of bioprinted prevascularized bone tissue.
    Rukavina P; Koch F; Wehrle M; Tröndle K; Björn Stark G; Koltay P; Zimmermann S; Zengerle R; Lampert F; Strassburg S; Finkenzeller G; Simunovic F
    Biotechnol Bioeng; 2020 Dec; 117(12):3902-3911. PubMed ID: 32749669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC
    Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling.
    Mirani B; Stefanek E; Godau B; Hossein Dabiri SM; Akbari M
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3269-3280. PubMed ID: 34142796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.
    Zhu W; Qu X; Zhu J; Ma X; Patel S; Liu J; Wang P; Lai CS; Gou M; Xu Y; Zhang K; Chen S
    Biomaterials; 2017 Apr; 124():106-115. PubMed ID: 28192772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin-Norbornene-Based Bioprinting.
    Zhao C; Wu Z; Chu H; Wang T; Qiu S; Zhou J; Zhu Q; Liu X; Quan D; Bai Y
    Biomacromolecules; 2021 Jun; 22(6):2729-2739. PubMed ID: 34057830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis.
    Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.