These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34496355)

  • 1. Lateral bending and buckling aids biological and robotic earthworm anchoring and locomotion.
    Ozkan-Aydin Y; Liu B; Ferrero AC; Seidel M; Hammond FL; Goldman DI
    Bioinspir Biomim; 2021 Nov; 17(1):. PubMed ID: 34496355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots.
    Kandhari A; Wang Y; Chiel HJ; Quinn RD; Daltorio KA
    Soft Robot; 2021 Aug; 8(4):485-505. PubMed ID: 32846113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous models for peristaltic locomotion with application to worms and soft robots.
    Hemingway EG; O'Reilly OM
    Biomech Model Mechanobiol; 2021 Feb; 20(1):5-30. PubMed ID: 32651774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An earthworm-like modular soft robot for locomotion in multi-terrain environments.
    Das R; Babu SPM; Visentin F; Palagi S; Mazzolai B
    Sci Rep; 2023 Jan; 13(1):1571. PubMed ID: 36709355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An earthworm-inspired soft robot with perceptive artificial skin.
    Calderón AA; Ugalde JC; Chang L; Cristóbal Zagal J; Pérez-Arancibia NO
    Bioinspir Biomim; 2019 Aug; 14(5):056012. PubMed ID: 30921776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion.
    Ge JZ; Calderón AA; Chang L; Pérez-Arancibia NO
    Bioinspir Biomim; 2019 Feb; 14(3):036004. PubMed ID: 30523957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions.
    Ruiz SA; Or D
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 29973400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CPG-Based Versatile Control Framework for Metameric Earthworm-Like Robotic Locomotion.
    Zhou Q; Xu J; Fang H
    Adv Sci (Weinh); 2023 May; 10(14):e2206336. PubMed ID: 36775888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact feedback helps snake robots propel against uneven terrain using vertical bending.
    Fu Q; Li C
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.
    Kandhari A; Huang Y; Daltorio KA; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2018 Jan; 13(2):026003. PubMed ID: 29261099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earthworm-Inspired Soft Skin Crawling Robot.
    Tirado J; Do CD; Moisson de Vaux J; Jørgensen J; Rafsanjani A
    Adv Sci (Weinh); 2024 Jun; 11(23):e2400012. PubMed ID: 38622890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris.
    Quillin KJ
    J Exp Biol; 2000 Sep; 203(Pt 18):2757-70. PubMed ID: 10952876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snakes combine vertical and lateral bending to traverse uneven terrain.
    Fu Q; Astley HC; Li C
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origami-based earthworm-like locomotion robots.
    Fang H; Zhang Y; Wang KW
    Bioinspir Biomim; 2017 Oct; 12(6):065003. PubMed ID: 28777743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yoshimura-origami Based Earthworm-like Robot With 3-dimensional Locomotion Capability.
    Zhang Q; Fang H; Xu J
    Front Robot AI; 2021; 8():738214. PubMed ID: 34490358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris.
    Quillin KJ
    J Exp Biol; 1999 Mar; 202 (Pt 6)():661-74. PubMed ID: 10021320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of peristaltic locomotion and role of anchoring.
    Tanaka Y; Ito K; Nakagaki T; Kobayashi R
    J R Soc Interface; 2012 Feb; 9(67):222-33. PubMed ID: 21831891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in scaling and morphology between lumbricid earthworm ecotypes.
    Kurth JA; Kier WM
    J Exp Biol; 2015 Sep; 218(Pt 18):2970-8. PubMed ID: 26232418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.
    Daltorio KA; Boxerbaum AS; Horchler AD; Shaw KM; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2013 Sep; 8(3):035003. PubMed ID: 23981561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.