These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 34496360)
1. Norbornene-functionalized methylcellulose as a thermo- and photo-responsive bioink. Kim MH; Lin CC Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496360 [TBL] [Abstract][Full Text] [Related]
2. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Duong VT; Lin CC Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347 [TBL] [Abstract][Full Text] [Related]
3. Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin-Norbornene-Based Bioprinting. Zhao C; Wu Z; Chu H; Wang T; Qiu S; Zhou J; Zhu Q; Liu X; Quan D; Bai Y Biomacromolecules; 2021 Jun; 22(6):2729-2739. PubMed ID: 34057830 [TBL] [Abstract][Full Text] [Related]
5. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Shin JY; Yeo YH; Jeong JE; Park SA; Park WH Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570 [TBL] [Abstract][Full Text] [Related]
6. Customization of an Ultrafast Thiol-Norbornene Photo-Cross-Linkable Hyaluronic Acid-Gelatin Bioink for Extrusion-Based 3D Bioprinting. Xiao X; Yang Y; Lai Y; Huang Z; Li C; Yang S; Niu C; Yang L; Feng L Biomacromolecules; 2023 Nov; 24(11):5414-5427. PubMed ID: 37883334 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a Novel Thiol-Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells. Burchak V; Koch F; Siebler L; Haase S; Horner VK; Kempter X; Stark GB; Schepers U; Grimm A; Zimmermann S; Koltay P; Strassburg S; Finkenzeller G; Simunovic F; Lampert F Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887286 [No Abstract] [Full Text] [Related]
9. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting. Kim MH; Lin CC ACS Appl Mater Interfaces; 2023 Jan; 15(2):2737-2746. PubMed ID: 36608274 [TBL] [Abstract][Full Text] [Related]
10. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
12. Thiol-Gelatin-Norbornene Bioink for Laser-Based High-Definition Bioprinting. Dobos A; Van Hoorick J; Steiger W; Gruber P; Markovic M; Andriotis OG; Rohatschek A; Dubruel P; Thurner PJ; Van Vlierberghe S; Baudis S; Ovsianikov A Adv Healthc Mater; 2020 Aug; 9(15):e1900752. PubMed ID: 31347290 [TBL] [Abstract][Full Text] [Related]
13. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
14. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
15. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. Bonetti L; De Nardo L; Farè S Tissue Eng Part B Rev; 2021 Oct; 27(5):486-513. PubMed ID: 33115329 [TBL] [Abstract][Full Text] [Related]
16. Photoclick polysaccharide-based bioinks with an extended biofabrication window for 3D embedded bioprinting. Zhou K; Feng M; Mao H; Gu Z Biomater Sci; 2022 Aug; 10(16):4479-4491. PubMed ID: 35792832 [TBL] [Abstract][Full Text] [Related]
17. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980 [TBL] [Abstract][Full Text] [Related]