These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34496744)

  • 1. RPocket: an intuitive database of RNA pocket topology information with RNA-ligand data resources.
    Zhou T; Wang H; Zeng C; Zhao Y
    BMC Bioinformatics; 2021 Sep; 22(1):428. PubMed ID: 34496744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RPpocket: An RNA-Protein Intuitive Database with RNA Pocket Topology Resources.
    Yang R; Liu H; Yang L; Zhou T; Li X; Zhao Y
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HKPocket: human kinase pocket database for drug design.
    Wang H; Qiu J; Liu H; Xu Y; Jia Y; Zhao Y
    BMC Bioinformatics; 2019 Nov; 20(1):617. PubMed ID: 31783725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.
    Shin WH; Bures MG; Kihara D
    Methods; 2016 Jan; 93():41-50. PubMed ID: 26427548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time ligand binding pocket database search using local surface descriptors.
    Chikhi R; Sael L; Kihara D
    Proteins; 2010 Jul; 78(9):2007-28. PubMed ID: 20455259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.
    Pérot S; Regad L; Reynès C; Spérandio O; Miteva MA; Villoutreix BO; Camproux AC
    PLoS One; 2013; 8(6):e63730. PubMed ID: 23840299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RBinds: A user-friendly server for RNA binding site prediction.
    Wang H; Zhao Y
    Comput Struct Biotechnol J; 2020; 18():3762-3765. PubMed ID: 34136090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSP4PDB: a web tool to visualize, search and explore protein-ligand structural patterns.
    Angles R; Arenas-Salinas M; García R; Reyes-Suarez JA; Pohl E
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):85. PubMed ID: 32164553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal ligand descriptor for pocket recognition based on the Beta-shape.
    Kim JK; Won CI; Cha J; Lee K; Kim DS
    PLoS One; 2015; 10(4):e0122787. PubMed ID: 25835497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches.
    Bhunia SS; Roy KK; Saxena AK
    J Chem Inf Model; 2011 Aug; 51(8):1966-85. PubMed ID: 21761917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNALigands: a database and web server for RNA-ligand interactions.
    Sun S; Yang J; Zhang Z
    RNA; 2022 Feb; 28(2):115-122. PubMed ID: 34732566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of planar and nonplanar ligands in the malachite green-RNA aptamer complex.
    Flinders J; DeFina SC; Brackett DM; Baugh C; Wilson C; Dieckmann T
    Chembiochem; 2004 Jan; 5(1):62-72. PubMed ID: 14695514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets.
    Elghobashi-Meinhardt N
    Biochemistry; 2014 Oct; 53(41):6603-14. PubMed ID: 25251378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-binding site prediction using ligand-interacting and binding site-enriched protein triangles.
    Xie ZR; Hwang MJ
    Bioinformatics; 2012 Jun; 28(12):1579-85. PubMed ID: 22495747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free resources to assist structure-based virtual ligand screening experiments.
    Villoutreix BO; Renault N; Lagorce D; Sperandio O; Montes M; Miteva MA
    Curr Protein Pept Sci; 2007 Aug; 8(4):381-411. PubMed ID: 17696871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Van der Waals Potential in Protein Complexes.
    Bitencourt-Ferreira G; Veit-Acosta M; de Azevedo WF
    Methods Mol Biol; 2019; 2053():79-91. PubMed ID: 31452100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.