BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 34496926)

  • 1. Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation.
    Yeh LF; Ozawa T; Johansen JP
    Mol Brain; 2021 Sep; 14(1):136. PubMed ID: 34496926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brief optogenetic inhibition of rat lateral or ventrolateral periaqueductal gray augments the acquisition of Pavlovian fear conditioning.
    Assareh N; Bagley EE; Carrive P; McNally GP
    Behav Neurosci; 2017 Dec; 131(6):454-459. PubMed ID: 29083203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional control of fear memories by cerebellar neurons projecting to the ventrolateral periaqueductal grey.
    Frontera JL; Baba Aissa H; Sala RW; Mailhes-Hamon C; Georgescu IA; Léna C; Popa D
    Nat Commun; 2020 Oct; 11(1):5207. PubMed ID: 33060630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events.
    Kincheski GC; Mota-Ortiz SR; Pavesi E; Canteras NS; Carobrez AP
    PLoS One; 2012; 7(11):e50361. PubMed ID: 23209724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement.
    Halladay LR; Blair HT
    J Neurophysiol; 2015 Aug; 114(2):793-807. PubMed ID: 25972588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitric oxide on defensive behavior and long-term aversive learning induced by chemical stimulation of the dorsolateral periaqueductal gray matter.
    Acuña LR; Back F; Barp CG; Guilherme Tassoni Bortoloci J; Assreuy J; Carobrez AP
    Neurobiol Learn Mem; 2023 Apr; 200():107735. PubMed ID: 36813080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periaqueductal gray glutamatergic, cannabinoid and vanilloid receptor interplay in defensive behavior and aversive memory formation.
    Back FP; Carobrez AP
    Neuropharmacology; 2018 Jun; 135():399-411. PubMed ID: 29596901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct regions of periaqueductal gray (PAG) are involved in freezing behavior in hooded PVG rats on the cat-freezing test apparatus.
    Farook JM; Wang Q; Moochhala SM; Zhu ZY; Lee L; Wong PT
    Neurosci Lett; 2004 Jan; 354(2):139-42. PubMed ID: 14698458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray.
    Johansen JP; Tarpley JW; LeDoux JE; Blair HT
    Nat Neurosci; 2010 Aug; 13(8):979-86. PubMed ID: 20601946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback neural circuit for calibrating aversive memory strength.
    Ozawa T; Ycu EA; Kumar A; Yeh LF; Ahmed T; Koivumaa J; Johansen JP
    Nat Neurosci; 2017 Jan; 20(1):90-97. PubMed ID: 27842071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray.
    Borelli KG; Ferreira-Netto C; Coimbra NC; Brandão ML
    Brain Res; 2005 Jul; 1051(1-2):100-11. PubMed ID: 15996642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditioned and unconditioned fear organized in the periaqueductal gray are differentially sensitive to injections of muscimol into amygdaloid nuclei.
    Martinez RC; de Oliveira AR; Brandão ML
    Neurobiol Learn Mem; 2006 Jan; 85(1):58-65. PubMed ID: 16198609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear.
    Vianna DM; Landeira-Fernandez J; Brandão ML
    Neurosci Biobehav Rev; 2001 Dec; 25(7-8):711-9. PubMed ID: 11801296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats.
    Koba S; Inoue R; Watanabe T
    Physiol Rep; 2016 Jun; 4(12):. PubMed ID: 27335434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors.
    Deng H; Xiao X; Wang Z
    J Neurosci; 2016 Jul; 36(29):7580-8. PubMed ID: 27445137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization.
    La-Vu MQ; Sethi E; Maesta-Pereira S; Schuette PJ; Tobias BC; Reis FMCV; Wang W; Torossian A; Bishop A; Leonard SJ; Lin L; Cahill CM; Adhikari A
    Elife; 2022 Jun; 11():. PubMed ID: 35674316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses.
    De Oca BM; DeCola JP; Maren S; Fanselow MS
    J Neurosci; 1998 May; 18(9):3426-32. PubMed ID: 9547249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.
    Arico C; Bagley EE; Carrive P; Assareh N; McNally GP
    Neurobiol Learn Mem; 2017 Oct; 144():186-197. PubMed ID: 28716712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar modulation of memory encoding in the periaqueductal grey and fear behaviour.
    Lawrenson C; Paci E; Pickford J; Drake RAR; Lumb BM; Apps R
    Elife; 2022 Mar; 11():. PubMed ID: 35287795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.