BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

796 related articles for article (PubMed ID: 34496967)

  • 1. Antimicrobial peptides: mechanism of action, activity and clinical potential.
    Zhang QY; Yan ZB; Meng YM; Hong XY; Shao G; Ma JJ; Cheng XR; Liu J; Kang J; Fu CY
    Mil Med Res; 2021 Sep; 8(1):48. PubMed ID: 34496967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rediscovery of antimicrobial peptides as therapeutic agents.
    Ryu M; Park J; Yeom JH; Joo M; Lee K
    J Microbiol; 2021 Feb; 59(2):113-123. PubMed ID: 33527313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides.
    Browne K; Chakraborty S; Chen R; Willcox MD; Black DS; Walsh WR; Kumar N
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32987946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance.
    Lima PG; Oliveira JTA; Amaral JL; Freitas CDT; Souza PFN
    Life Sci; 2021 Aug; 278():119647. PubMed ID: 34043990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides (AMPs): a patent review (2015-2020).
    Annunziato G; Costantino G
    Expert Opin Ther Pat; 2020 Dec; 30(12):931-947. PubMed ID: 33187458
    [No Abstract]   [Full Text] [Related]  

  • 6. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations.
    Casciaro B; Cappiello F; Verrusio W; Cacciafesta M; Mangoni ML
    Curr Top Med Chem; 2020; 20(14):1264-1273. PubMed ID: 32338221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity.
    Liang Y; Zhang X; Yuan Y; Bao Y; Xiong M
    Biomater Sci; 2020 Dec; 8(24):6858-6866. PubMed ID: 32815940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections.
    Neshani A; Sedighian H; Mirhosseini SA; Ghazvini K; Zare H; Jahangiri A
    Microb Pathog; 2020 Sep; 146():104238. PubMed ID: 32387392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.
    Andersson DI; Hughes D; Kubicek-Sutherland JZ
    Drug Resist Updat; 2016 May; 26():43-57. PubMed ID: 27180309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial peptides as therapeutic agents: opportunities and challenges.
    Mahlapuu M; Björn C; Ekblom J
    Crit Rev Biotechnol; 2020 Nov; 40(7):978-992. PubMed ID: 32781848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens.
    Pardhi DM; Şen Karaman D; Timonen J; Wu W; Zhang Q; Satija S; Mehta M; Charbe N; McCarron PA; Tambuwala MM; Bakshi HA; Negi P; Aljabali AA; Dua K; Chellappan DK; Behera A; Pathak K; Watharkar RB; Rautio J; Rosenholm JM
    Int J Pharm; 2020 Aug; 586():119531. PubMed ID: 32540348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically modified and conjugated antimicrobial peptides against superbugs.
    Li W; Separovic F; O'Brien-Simpson NM; Wade JD
    Chem Soc Rev; 2021 Apr; 50(8):4932-4973. PubMed ID: 33710195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of antimicrobial frog peptides and temporin-1DRa analogues for treatment of bacterial infections based on their cytotoxicity and differential activity against pathogens.
    Gaiser RA; Ayerra Mangado J; Mechkarska M; Kaman WE; van Baarlen P; Conlon JM; Wells JM
    Chem Biol Drug Des; 2020 Oct; 96(4):1103-1113. PubMed ID: 31102497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for recombinant production of antimicrobial peptides with pharmacological potential.
    Sampaio de Oliveira KB; Leite ML; Rodrigues GR; Duque HM; da Costa RA; Cunha VA; de Loiola Costa LS; da Cunha NB; Franco OL; Dias SC
    Expert Rev Clin Pharmacol; 2020 Apr; 13(4):367-390. PubMed ID: 32357080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptide polymers: no escape to ESKAPE pathogens-a review.
    Mukhopadhyay S; Bharath Prasad AS; Mehta CH; Nayak UY
    World J Microbiol Biotechnol; 2020 Aug; 36(9):131. PubMed ID: 32737599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2?
    Kurpe SR; Grishin SY; Surin AK; Panfilov AV; Slizen MV; Chowdhury SD; Galzitskaya OV
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections.
    Buccini DF; Cardoso MH; Franco OL
    Front Cell Infect Microbiol; 2020; 10():612931. PubMed ID: 33614528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies.
    Luu T; Li W; O'Brien-Simpson NM; Hong Y
    Chem Asian J; 2021 May; 16(9):1027-1040. PubMed ID: 33723926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance.
    Drayton M; Kizhakkedathu JN; Straus SK
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32635310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections.
    Li J; Fernández-Millán P; Boix E
    Curr Top Med Chem; 2020; 20(14):1238-1263. PubMed ID: 32124698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.