These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34497485)

  • 1. Brain Function Network: Higher Order vs. More Discrimination.
    Guo T; Zhang Y; Xue Y; Qiao L; Shen D
    Front Neurosci; 2021; 15():696639. PubMed ID: 34497485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating High-Order Brain Functional Networks in Bayesian View for Autism Spectrum Disorder Identification.
    Jiang X; Zhou Y; Zhang Y; Zhang L; Qiao L; De Leone R
    Front Neurosci; 2022; 16():872848. PubMed ID: 35573311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification.
    Chen H; Zhang Y; Zhang L; Qiao L; Shen D
    Front Aging Neurosci; 2020; 12():595322. PubMed ID: 33584242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating high-order brain functional networks by correlation-preserving embedding.
    Su H; Zhang L; Qiao L; Liu M
    Med Biol Eng Comput; 2022 Oct; 60(10):2813-2823. PubMed ID: 35869385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order brain functional network for electroencephalography-based diagnosis of major depressive disorder.
    Zhao F; Pan H; Li N; Chen X; Zhang H; Mao N; Ren Y
    Front Neurosci; 2022; 16():976229. PubMed ID: 36017184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment.
    Zhou Y; Qiao L; Li W; Zhang L; Shen D
    Front Neuroinform; 2018; 12():3. PubMed ID: 29467643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying depression disorder using multi-view high-order brain function network derived from electroencephalography signal.
    Zhao F; Gao T; Cao Z; Chen X; Mao Y; Mao N; Ren Y
    Front Comput Neurosci; 2022; 16():1046310. PubMed ID: 36387303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Individuals by fNIRS-Based Brain Functional Network Fingerprints.
    Ren H; Zhou S; Zhang L; Zhao F; Qiao L
    Front Neurosci; 2022; 16():813293. PubMed ID: 35221902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of node features on GCN-based brain network classification: an empirical study.
    Wang G; Zhang L; Qiao L
    PeerJ; 2023; 11():e14835. PubMed ID: 36967986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph Convolutional Network with Self-supervised Learning for Brain Disease Classification.
    Wang G; Chu Y; Wang Q; Zhang L; Qiao L; Liu M
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul; PP():. PubMed ID: 38954584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Brain Functional Networks With Latent Temporal Dependency for MCI Identification.
    Xue Y; Zhang Y; Zhang L; Lee SW; Qiao L; Shen D
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):590-601. PubMed ID: 34347591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection.
    Kam TE; Zhang H; Jiao Z; Shen D
    IEEE Trans Med Imaging; 2020 Feb; 39(2):478-487. PubMed ID: 31329111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing Dynamic Brain Functional Networks via Hyper-Graph Manifold Regularization for Mild Cognitive Impairment Classification.
    Ji Y; Zhang Y; Shi H; Jiao Z; Wang SH; Wang C
    Front Neurosci; 2021; 15():669345. PubMed ID: 33867931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain connectivity patterns derived from aging-related alterations in dynamic brain functional networks and their potential as features for brain age classification.
    Han H; Jiang J; Gu L; Gan JQ; Wang H
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38479020
    [No Abstract]   [Full Text] [Related]  

  • 15. Weighted Graph Regularized Sparse Brain Network Construction for MCI Identification.
    Yu R; Qiao L; Chen M; Lee SW; Fei X; Shen D
    Pattern Recognit; 2019 Jun; 90():220-231. PubMed ID: 31579345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on depression recognition based on brain function network].
    Zhang B; Zhou W; Li Y; Chang W; Xu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):47-55. PubMed ID: 35231965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Maximum Eigenvalue of the Brain Functional Network Adjacency Matrix: Meaning and Application in Mental Fatigue Evaluation.
    Li G; Jiang Y; Jiao W; Xu W; Huang S; Gao Z; Zhang J; Wang C
    Brain Sci; 2020 Feb; 10(2):. PubMed ID: 32050462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification.
    Li W; Wang Z; Zhang L; Qiao L; Shen D
    Front Neuroinform; 2017; 11():55. PubMed ID: 28912708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating Functional Connectivity Networks via Low-Rank Tensor Approximation With Applications to MCI Identification.
    Jiang X; Zhang L; Qiao L; Shen D
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1912-1920. PubMed ID: 31675312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating sparse functional connectivity networks via hyperparameter-free learning model.
    Sun L; Xue Y; Zhang Y; Qiao L; Zhang L; Liu M
    Artif Intell Med; 2021 Jan; 111():102004. PubMed ID: 33461688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.