These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34497640)

  • 1. An Improved CNN Architecture to Diagnose Skin Cancer in Dermoscopic Images Based on Wildebeest Herd Optimization Algorithm.
    Zhou B; Arandian B
    Comput Intell Neurosci; 2021; 2021():7567870. PubMed ID: 34497640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks.
    Behara K; Bhero E; Agee JT
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.
    Attallah O
    Comput Biol Med; 2024 Aug; 178():108798. PubMed ID: 38925085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin cancer diagnosis (SCD) using Artificial Neural Network (ANN) and Improved Gray Wolf Optimization (IGWO).
    Lai W; Kuang M; Wang X; Ghafariasl P; Sabzalian MH; Lee S
    Sci Rep; 2023 Nov; 13(1):19377. PubMed ID: 37938553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Henry Gas Solubility Optimization Algorithm based Feature Extraction in Dermoscopic Images Analysis of Skin Cancer.
    Obayya M; Alhebri A; Maashi M; S Salama A; Mustafa Hilal A; Alsaid MI; Osman AE; Alneil AA
    Cancers (Basel); 2023 Apr; 15(7):. PubMed ID: 37046806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InSiNet: a deep convolutional approach to skin cancer detection and segmentation.
    Reis HC; Turk V; Khoshelham K; Kaya S
    Med Biol Eng Comput; 2022 Mar; 60(3):643-662. PubMed ID: 35028864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized self-attention based cycle-consistent generative adversarial network adopted melanoma classification from dermoscopic images.
    Harini P; Madhavi NB; Latha SB; Sasikumar AN
    Microsc Res Tech; 2024 Jun; 87(6):1271-1285. PubMed ID: 38353334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare.
    Maqsood S; Damaševičius R
    Neural Netw; 2023 Mar; 160():238-258. PubMed ID: 36701878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior skin cancer classification by the combination of human and artificial intelligence.
    Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ;
    Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bluish veil detection and lesion classification using custom deep learnable layers with explainable artificial intelligence (XAI).
    Rasel MA; Abdul Kareem S; Kwan Z; Yong SS; Obaidellah U
    Comput Biol Med; 2024 Aug; 178():108758. PubMed ID: 38905895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification.
    Mahbod A; Schaefer G; Wang C; Dorffner G; Ecker R; Ellinger I
    Comput Methods Programs Biomed; 2020 Sep; 193():105475. PubMed ID: 32268255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin Cancer Detection Using Kernel Fuzzy C-Means and Improved Neural Network Optimization Algorithm.
    Huaping J; Junlong Z; Norouzzadeh Gil Molk AM
    Comput Intell Neurosci; 2021; 2021():9651957. PubMed ID: 34335727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing assisted diagnostic accuracy in scalp psoriasis: A Multi-Network Fusion Object Detection Framework for dermoscopic pattern diagnosis.
    Ji H; Li J; Zhu X; Fan L; Jiang W; Chen Y
    Skin Res Technol; 2024 Apr; 30(4):e13698. PubMed ID: 38634154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosing skin cancer using social spider optimization (SSO) and error correcting output codes (ECOC) with weighted hamming distance.
    Mahin J; Xu X; Li L; Zhang C
    Sci Rep; 2024 Oct; 14(1):22997. PubMed ID: 39362910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin cancer classification based on an optimized convolutional neural network and multicriteria decision-making.
    Saleh N; Hassan MA; Salaheldin AM
    Sci Rep; 2024 Jul; 14(1):17323. PubMed ID: 39068205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function.
    Pham TC; Luong CM; Hoang VD; Doucet A
    Sci Rep; 2021 Sep; 11(1):17485. PubMed ID: 34471174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
    Al-Masni MA; Kim DH; Kim TS
    Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images.
    Iqbal I; Younus M; Walayat K; Kakar MU; Ma J
    Comput Med Imaging Graph; 2021 Mar; 88():101843. PubMed ID: 33445062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.