BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34497824)

  • 21. Bone marrow stromal cells transplantation combined with ultrashortwave therapy promotes functional recovery on spinal cord injury in rats.
    Yin YM; Lu Y; Zhang LX; Zhang GP; Zhang ZQ
    Synapse; 2015 Mar; 69(3):139-47. PubMed ID: 25600592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats.
    Li X; Yang Z; Zhang A; Wang T; Chen W
    Biomaterials; 2009 Feb; 30(6):1121-32. PubMed ID: 19042014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment.
    Xiang W; Cao H; Tao H; Jin L; Luo Y; Tao F; Jiang T
    Int J Biol Macromol; 2023 Mar; 230():123447. PubMed ID: 36708903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An acute growth factor treatment that preserves function after spinal cord contusion injury.
    Chehrehasa F; Cobcroft M; Young YW; Mackay-Sim A; Goss B
    J Neurotrauma; 2014 Nov; 31(21):1807-13. PubMed ID: 24836764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats.
    Xu G; Shi D; Zhi Z; Ao R; Yu B
    J Cell Biochem; 2019 Apr; 120(4):5183-5192. PubMed ID: 30257055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Social and environmental enrichment improves sensory and motor recovery after severe contusive spinal cord injury in the rat.
    Berrocal Y; Pearse DD; Singh A; Andrade CM; McBroom JS; Puentes R; Eaton MJ
    J Neurotrauma; 2007 Nov; 24(11):1761-72. PubMed ID: 18001204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arundic acid (ONO-2506) inhibits secondary injury and improves motor function in rats with spinal cord injury.
    Hanada M; Shinjo R; Miyagi M; Yasuda T; Tsutsumi K; Sugiura Y; Imagama S; Ishiguro N; Matsuyama Y
    J Neurol Sci; 2014 Feb; 337(1-2):186-92. PubMed ID: 24360553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of miR-17-5p promotes mesenchymal stem cells to repair spinal cord injury.
    Yue XH; Guo L; Wang ZY; Jia TH
    Eur Rev Med Pharmacol Sci; 2019 May; 23(9):3899-3907. PubMed ID: 31115018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local injection of lentivirus encoding LINGO-1-shRNA promotes functional recovery in rats with complete spinal cord transection.
    Cen J; Wu H; Wang J; Ren X; Zhang H; Wang J; Wan Y; Deng Y
    Spine (Phila Pa 1976); 2013 Sep; 38(19):1632-9. PubMed ID: 23759802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transplantation of Mesenchymal Stem Cells for Acute Spinal Cord Injury in Rats: Comparative Study between Intralesional Injection and Scaffold Based Transplantation.
    Kim YC; Kim YH; Kim JW; Ha KY
    J Korean Med Sci; 2016 Sep; 31(9):1373-82. PubMed ID: 27510379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of collagen/chitosan sponges mineralized with hydroxyapatite for the repair of cranial defects in rats.
    Munhoz MAS; Hirata HH; Plepis AMG; Martins VCA; Cunha MR
    Injury; 2018 Dec; 49(12):2154-2160. PubMed ID: 30268514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.
    Hu J; Lang Y; Zhang T; Ni S; Lu H
    Neuroscience; 2016 Jul; 328():40-9. PubMed ID: 27132229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of stem cells and chitosan in the repair of spinal cord injury.
    Hu X; Zhou X; Li Y; Jin Q; Tang W; Chen Q; Aili D; Qian H
    Int J Dev Neurosci; 2019 Aug; 76():80-85. PubMed ID: 31302172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal regeneration after acute spinal cord injury in adult rats.
    He B; Nan G
    Spine J; 2016 Dec; 16(12):1459-1467. PubMed ID: 27349629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beneficial effects of thymosin β4 on spinal cord injury in the rat.
    Cheng P; Kuang F; Zhang H; Ju G; Wang J
    Neuropharmacology; 2014 Oct; 85():408-16. PubMed ID: 24937047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repairing and Analgesic Effects of Umbilical Cord Mesenchymal Stem Cell Transplantation in Mice with Spinal Cord Injury.
    Wu LL; Pan XM; Chen HH; Fu XY; Jiang J; Ding MX
    Biomed Res Int; 2020; 2020():7650354. PubMed ID: 32337276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of curcumin on the recovery of hind limb function after spinal cord injury in rats and its mechamism].
    Hao Q; Wang HW; Yu Q; Shen J; Zhao L; Shi FF; Chen MM; Yang YL
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2017 May; 33(5):441-444. PubMed ID: 29926590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular Vesicles Derived from Epidural Fat-Mesenchymal Stem Cells Attenuate NLRP3 Inflammasome Activation and Improve Functional Recovery After Spinal Cord Injury.
    Huang JH; Fu CH; Xu Y; Yin XM; Cao Y; Lin FY
    Neurochem Res; 2020 Apr; 45(4):760-771. PubMed ID: 31953741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.
    Samantaray S; Das A; Matzelle DC; Yu SP; Wei L; Varma A; Ray SK; Banik NL
    J Neurochem; 2016 May; 137(4):604-17. PubMed ID: 26998684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.